
SinoDB JSON Compatibility Guide
Sinoregal SinoDB Product Family

SinoDB

Version 12.10

SinoDB | Contents | 2

Contents

List of Figures..4

List of Tables...5

Introduction... 7
About This Publication.. 7

Types of Users.. 7
Demonstration databases.. 7

Java
™
 technology dependencies.. 7

Example code conventions.. 9
How to read the syntax diagrams...9
Compliance with industry standards... 10

Chapter 1: About the SinoDB
®
 JSON compatibility..................11

Getting started with SinoDB
®
 JSON.. 12

Software dependencies for JSON compatibility... 13
MongoDB to SinoDB

®
 term mapping.. 13

Support for dots in field names..14
Manipulate BSON data with SQL statements... 15

Chapter 2: Wire listener.. 17
Configuring the wire listener for the first time.....................................17
The wire listener configuration file... 19

Modifying the wire listener configuration file................................. 41
Wire listener command line options... 41

Starting the wire listener... 43
Running multiple wire listeners.. 44
Stopping the wire listener... 45
Wire listener logging.. 45

User authentication with the wire listener... 46
Configuring MongoDB authentication..47

Encryption for wire listener communications.. 48
Configuring SSL connections between the wire listener and the database server... 48
Configuring SSL connections between the wire listener and client applications... 49

Queries through the wire listener.. 49
Running SQL commands by using the MongoDB API..................................49
Running MongoDB operations on relational tables................................ 51
Running join queries by using the wire listener................................52

High availability support in the wire listener....................................... 53

Chapter 3: JSON data sharding................................... 55
Preparing shard servers.. 55
Creating a shard cluster with MongoDB commands....................................... 56
Shard-cluster definitions for distributing data...................................... 57

Defining a sharding schema with a hash algorithm............................... 58
Defining a sharding schema with an expression.................................. 59

Shard cluster management... 61
Changing the definition for a shard cluster.................................... 62

SinoDB | Contents | 3

Viewing shard-cluster participants..64

Chapter 4: MongoDB API and commands............................. 66
Language drivers..66
Command utilities and tools.. 66
Collection methods.. 66
Index creation..68
Database commands... 69
SinoDB

®
 JSON commands... 76

Operators... 84
Query and projection operators... 84
Update operators..87
SinoDB

®
 query operators... 89

Aggregation framework operators...89

Chapter 5: REST API... 92
REST API syntax.. 92

Chapter 6: MQTT protocol....................................... 101
MQTT packet syntax.. 101

Chapter 7: Manage time series through the wire listener.........103
Creating a time series through the wire listener....................................103

Time series collections and table formats..................................... 104
Example: Create a time series through the wire listener....................... 107

Example queries of time series data by using the wire listener...................... 112
Aggregate or slice time series data...117
Loading time series data with the MQTT protocol.....................................123

Chapter 8: Troubleshooting SinoDB
®
 JSON compatibility........... 125

SinoDB | List of Figures | 4

List of Figures

Figure 1: listShards command output for a shard cluster.................... 65

Figure 2: calendar...

SinoDB | List of Tables | 5

List of Tables

Table 1: MongoDB concepts mapped to one or more SinoDB concepts.............13

Table 2: Authentication types for the MongoDB API by version................46

Table 3: Authentication types for the REST API by supported MongoDB versions. 47

Table 4: Authentication types for the MQTT protocol by supported MongoDB
versions.. 47

Table 5: Supported collection methods...................................... 66

Table 6: Aggregation commands.. 70

Table 7: Geospatial commands... 70

Table 8: Query and write operation commands................................ 70

Table 9: Authentication commands..71

Table 10: User management commands... 71

Table 11: Role management commands... 71

Table 12: Diagnostic commands.. 72

Table 13: Instance administration commands..................................74

Table 14: Replication commands..75

Table 15: Replication commands..75

Table 16: Array query operators.. 85

Table 17: Comparison query operators....................................... 85

Table 18: Element query operators.. 85

Table 19: Evaluation query operators....................................... 86

Table 20: Geospatial query operators....................................... 86

Table 21: Logical query operators.. 86

Table 22: Projection operators..87

Table 23: Query modifiers.. 87

Table 24: Array update operators... 87

Table 25: Array update modifiers... 88

SinoDB | List of Tables | 6

Table 26: Bitwise update operators... 88

Table 27: Field update operators... 88

Table 28: Pipeline operators... 89

Table 29: $group operators... 90

Table 30: Supported POST method syntax..................................... 93

Table 31: Supported PUT method syntax...................................... 95

Table 32: Supported GET method syntax...................................... 95

Table 33: Supported DELETE method syntax................................... 98

Table 34: Time series properties used in this example..................... 108

Introduction

This introduction provides an overview of the information in this publication and describes
the conventions that this publication uses.

About This Publication

This publication contains information about using the SinoDB® JSON capability.

This section discusses the intended audience for this publication and the associated software
products that you must have to use the administrative utilities.

Types of Users

This publication is written for the following users:

• Database administrators

• System administrators

• Performance engineers

This publication is written with the assumption that you have the following background:

• A working knowledge of your computer, your operating system, and the utilities that your
operating system provides

• Some experience working with relational databases or exposure to database concepts

• Some experience with database server administration, operating-system administration, or
network administration

Demonstration databases

The DB-Access utility, which is provided with your SinoDB® database server products, includes
one or more of the following demonstration databases:

• The stores_demo database illustrates a relational schema with information about a
fictitious wholesale sporting-goods distributor. Many examples in Sinoregal® publications
are based on the stores_demo database.

• The superstores_demo database illustrates an object-relational schema. The superstores_demo
database contains examples of extended data types, type and table inheritance, and user-
defined routines.

For information about how to create and populate the demonstration databases, see the SinoDB®

DB-Access User's Guide. For descriptions of the databases and their contents, see the SinoDB®

Guide to SQL: Reference.

The scripts that you use to install the demonstration databases are in the $INFORMIXDIR/bin
directory on UNIX™ platforms and in the %INFORMIXDIR%\bin directory in Windows™ environments.

Java™ technology dependencies

SinoDB® software supports Java™ Platform Standard Edition (Java™ SE) to create and run Java™

applications, including user-defined routines (UDRs). Java™ SE 7 is supported.

Important:

SinoDB | Introduction | 8

• Check the machine notes to learn about Java™ technology exceptions and other
requirements for specific operating system platforms. The machine notes are available
on the product media.

• In general, any application that ran correctly with earlier versions of Java™

technology will run correctly with this version. If you encounter problems, recompile
the application with the next available fix pack or version. However, because there
are frequent Java™ fixes and updates, not all of them are tested.

• To develop Java™ UDRs for the database server, use the supported Java™ software
development kit or an earlier version according to Java™ compatibility guidelines.
The supported version provides a known and reliable Java™ environment for UDRs in
this database server release.

For details about Java requirements, check the following sections:

Java runtime environment on page 8
Software development kit for Java on page 8
Java Database Connectivity (JDBC) specification on page 8

Java™ runtime environment

On most supported operating system platforms, the SinoDB® installation application bundles a
Java™ runtime environment that it requires. However, check the machine notes for your operating
system platform to determine whether the installation application requires a particular Java™

runtime environment to be preinstalled.

Also, IBM® Runtime Environment, Java™ Technology Edition is supported for general use of
the database server. It is installed on most operating system platforms by default in the
following directory: $INFORMIXDIR/extend/krakatoa/jre/.

MongoDB API and REST API access supports IBM® Runtime Environment, Java™ Technology Edition,
Version 7.

Software development kit for Java™

The following products and components require a software development kit for Java™, but one is
not installed:

• SinoDB® JDBC Driver

• J/Foundation component

• Spatial Java™ API

• TimeSeries Java™ API

The software development kit that you use must be compatible with the supported Java™ runtime
environment. SinoDB® does not support OpenJDK. You can download a development kit from the
following web sites:

• Recommended for AIX and Linux: IBM® SDK, Java™ Technology Edition (http://www.ibm.com/
developerworks/java/jdk/)

• Recommended for HP-UX: HP-UX 11i Java™ Development Kit for the Java™ 2 Platform
Standard Edition (https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?
productNumber=HPUXJAVAHOME)

• Oracle Java™ Platform, Standard Edition Development Kit (JDK) (http://www.oracle.com/technetwork/
java/javase/downloads/index.html)

Java™ Database Connectivity (JDBC) specification

SinoDB® products and components support the Java™ Database Connectivity (JDBC) 3.0
specification.

http://www.ibm.com/developerworks/java/jdk/
http://www.ibm.com/developerworks/java/jdk/
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPUXJAVAHOME
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPUXJAVAHOME
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

SinoDB | Introduction | 9

Example code conventions

Examples of SQL code occur throughout this publication. Except as noted, the code is not
specific to any single SinoDB® application development tool.

If only SQL statements are listed in the example, they are not delimited by semicolons. For
instance, you might see the code in the following example:

CONNECT TO stores_demo
...

DELETE FROM customer
 WHERE customer_num = 121
...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for that product.
For example, if you are using an SQL API, you must use EXEC SQL at the start of each statement
and a semicolon (or other appropriate delimiter) at the end of the statement. If you are using
DB-Access, you must delimit multiple statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in a full
application, but it is not necessary to show it to describe the concept that is being
discussed.

For detailed directions on using SQL statements for a particular application development tool
or SQL API, see the documentation for your product.

How to read the syntax diagrams

Syntax diagrams use special components to describe the syntax for SQL statements and commands.

Read the syntax diagrams from left to right and top to bottom, following the path of the line.

The double right arrowhead and line symbol ►►── indicates the beginning of a syntax
diagram.

The line and single right arrowhead symbol ──► indicates that the syntax is continued on the
next line.

The right arrowhead and line symbol ►── indicates that the syntax is continued from the
previous line.

The line, right arrowhead, and left arrowhead symbol ──►◄ symbol indicates the end of a
syntax diagram.

Syntax fragments start with the pipe and line symbol |── and end with the ──| line and
pipe symbol.

Required items appear on the horizontal line (the main path).

required_item

Optional items appear below the main path.

required_item
[optional_item]

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

SinoDB | Introduction | 10

required_item
{ required_choice1 required_choice2 }

If choosing one of the items is optional, the entire stack appears below the main path.

required_item
[{ optional_choice1 optional_choice2 }]

If one of the items is the default, it will appear above the main path, and the remaining
choices will be shown below.

required_item
[{ default_choice optional_choice optional_choice }]

An arrow returning to the left, above the main line, indicates an item that can be repeated.
In this case, repeated items must be separated by one or more blanks.

required_item
repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item
, repeatable_item

A repeat arrow above a stack indicates that you can make more than one choice from the stacked
items or repeat a single choice.

SQL keywords appear in uppercase (for example, FROM). They must be spelled exactly as shown.
Variables appear in lowercase (for example, column-name). They represent user-supplied names
or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you
must enter them as part of the syntax.

Sometimes a single variable represents a syntax segment. For example, in the following
diagram, the variable parameter-block represents the syntax segment that is labeled parameter-
block:

required_item <parameter-block>

parameter-block
parameter-block
{ parameter1 | parameter2 { parameter3 parameter4 } }

Compliance with industry standards

SinoDB® products are compliant with various standards.

SinoDB® SQL-based products are fully compliant with SQL-92 Entry Level (published as ANSI
X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of SinoDB®

database servers comply with the SQL-92 Intermediate and Full Level and X/Open SQL Common
Applications Environment (CAE) standards.

Chapter

1
About the SinoDB® JSON compatibility

You can combine relational and JSON data into a single query by using the SinoDB® JSON
compatibility features.

Applications that use the JSON-oriented query language can interact with relational and non-
relational data that is stored in SinoDB® databases by using the wire listener. The SinoDB®

database server also provides built-in JSON and BSON (binary JSON) data types.

You have the following options for accessing relational tables, including time series tables
and tables with WebSphere® MQ data, and JSON collections:

SQL API

You can insert, update, and query data relational tables through the SQL language and
standard ODBC, JDBC, .NET, OData, and other clients.

You can access JSON collections through direct SQL access and the JDBC driver. You can use
the SQL BSON processing functions to convert JSON collections to relational data types for
use with ODBC, .NET, OData, and other clients.

MongoDB API

You can insert, update, and query data in relational tables and JSON collections through
MongoDB APIs for Java™, JavaScript™, C++, C#, Python, and other clients.

REST API

You can insert, update, and query data relational tables and JSON collections through the
driverless REST API. You can run command documents that include MongoDB API commands or SQL
queries. You can use the REST API to load time series data from sensor devices.

MQTT protocol

You can insert JSON data into relational tables and JSON collections through the MQTT
protocol for Java™, JavaScript™, C++, PHP, Python, Ruby, and other clients. You can use the
MQTT protocol to load time series data from sensor devices.

The JSON document format provides a way to transfer object information in a way that is
language neutral, similar to XML. Language-neutral data transmission is a requirement for
working in a web application environment, where data comes from various sources and software
is written in various languages. With SinoDB®, you can choose which parts of your application
data are better suited unstructured, non-relational storage, and which parts are better suited
in a traditional relational framework.

You can enable dynamic scaling and high-availability for data-intensive applications by taking
the following steps:

• Define a sharded cluster to easily add or remove servers as your requirements change.

• Use shard keys to distribute subsets of data across multiple servers in a sharded cluster.

• Query the correct servers in a sharded cluster and return the consolidated results to the
client application.

• Use secondary servers (similar to subordinates in MongoDB) in the sharded cluster to
maximize availability and throughput. Secondary servers also have update capability.

SinoDB | About the SinoDB® JSON compatibility | 12

You can choose to authenticate users through the wire listener or in the database server.

You can configure multiple wire listeners for multiple client protocols. The following
illustration shows the architecture of the wire listeners and the database server.

Getting started with SinoDB® JSON

You can begin using the SinoDB® JSON features after installing SinoDB®.

If you create the SinoDB® server instance as a part of your installation, the wire listener
is automatically started and connected to the MongoDB API and the database server with the
default operational instance. You can use the MongoDB shell and any of the standard MongoDB
command utilities and tools. To use the REST API or the MQTT protocol, you must modify the
default configuration.

If you create the SinoDB® server instance outside of the installation process, you must
configure and start the wire listener manually.

Related Links

Modifying the wire listener configuration file on page 41
Configuring the wire listener for the first time on page 17
MongoDB API and commands on page 66
REST API on page 92

SinoDB | About the SinoDB® JSON compatibility | 13

Software dependencies for JSON compatibility

SinoDB® JSON compatibility is based on MongoDB version 2.4, 2.6, and 3.0, and has specific
software dependencies.

Sinoregal® JSON compatibility requires SinoDB® version 12.10.xC2 or later, with the J/
Foundation component, which enables services that use Java™.

You must use a supported Java™ runtime environment .

You set the version of the MongoDB API that the wire listener uses by setting the
mongo.api.version parameter in the wire listener configuration file. The MongoDB API version
affects the type of authentication that you can use. For example, MongoDB version 3.0 supports
the MongoDB SCRAM-SHA-1 authentication method, but does not support connections with the REST
API.

MongoDB to SinoDB® term mapping

The commonly used MongoDB terminology and concepts are mapped to the equivalent SinoDB®

terminology and concepts.

The following table provides a summary of commonly used MongoDB terms and their SinoDB®

conceptual equivalents.

Table 1: MongoDB concepts mapped to one or more SinoDB® concepts.

MongoDB concept SinoDB® concept Description

collection table This is the same concept.
In SinoDB® this type of
collection is sometimes
referred to as a JSON
collection. A JSON collection
is similar to a relational
database table, except it does
not enforce a schema.

document record This is the same concept. In
SinoDB®, this type of document
is sometimes referred to as a
JSON document.

field column This is the same concept.

master / slave primary server / secondary
server

This is the same concept.
However, SinoDB® secondary
servers have additional
capabilities. For example,
data on a secondary server can
be updated and propagated to
primary servers.

replica set high-availability cluster This is the same concept.
However, when the replica set
is updated, it is then sent to
all servers, not only to the
primary server.

SinoDB | About the SinoDB® JSON compatibility | 14

MongoDB concept SinoDB® concept Description

sharded cluster shard cluster This is the same concept. In
SinoDB®, a shard cluster is a
group of servers (sometimes
called shard servers) that
contain sharded data.

shard key shard key This is the same concept.

Support for dots in field names

Unlike MongoDB, which does not allow dots, (.), in JSON or BSON field names, SinoDB® conforms
to the JSON standard and allows dots. For example: {"user.fn" : "Jake"}. However, you cannot
run a query or an operation directly on a field that has a dot in its name. In queries, a dot
in between field names indicates a hierarchy.

Here the rules of using field names with dots in them with SinoDB®:

• You can insert a document that has a field name with a dot in it. You do not get an error.

• You cannot use a field name with a dot in it in a query or operation. SinoDB® ignores the
field. The query does not return the matching document. The operation does not affect the
value of the field.

• You can return a document that includes a field name with a dot in it by querying on a
field name in the same document that does not have a dot in it.

Allowing dots in field names is useful when you do not have control over the field names
because your data comes from external sources, for example, the Google API. You still want
to store those documents in your database, even though some fields might have dots in their
names.

The following examples to illustrate how dots in field names work in SinoDB®. The table name is
tab1 and the column that contains JSON data is named data.

Suppose that you have the following document:

 {user : {fn : "Bob", ln : "Smith"}, "user.fn" : "Jake"}

You run the following statement to update a field:

SELECT data::json FROM tab1 WHERE BSON_UPDATE(data, '$set : {"user.fn" :
 "John:}}');

The following document is returned:

{user : {fn : "John", ln : "Smith"}, "user.fn" : "Jake"}

The value of the fn field that is in a subdocument to the user field is updated. The value of
the user.fn field is not updated, but the value is returned. You cannot update the value of a
field with a dot in its name, but you can retrieve the value.

Suppose that you have the following document:

{"user.firstname" : "Jake"}

You run this query to return the value of the user.firstname field:

SELECT data::json FROM tab1 WHERE BSON_KEYS_EXIST(data,
 "user.firstname");

SinoDB | About the SinoDB® JSON compatibility | 15

No documents are returned.

If you have documents where all the fields have dots in their names, you must run a query to
return all documents in the database to see them: for example:

SELECT data::json FROM tab1;

Manipulate BSON data with SQL statements

As an alternative to using the MongoDB API, you can use SinoDB® SQL to manipulate BSON data.
However, if you plan to query JSON and BSON data through the wire listener, you must create
your database objects, such as collections and indexes, through the wire listener. You can use
SQL statements to query JSON and BSON data whether you created your database objects through
the wire listener or with SQL statements.

You might have an existing application on relational tables that uses SQL to access the data,
but you want to add BSON data to your database. You can create a table with a BSON column,
insert the data, and manipulate the data with SQL statements. BSON documents that you insert
through SQL statements or SinoDB® utilities do not contain generated ObjectId field-value pairs
or other MongoDB metadata.

Alternatively, you might use a MongoDB client for daily data processing, but need the querying
capabilities of SQL for data analysis. For example, you can use SQL statements to join tables
that have BSON columns with other tables based on BSON field values. You can create views
that have columns of BSON field values. You can run warehouse queries on BSON data with
Warehouse Accelerator. If you have spatial, time series, or spatiotemporal data, you can use
the corresponding specialized SQL routines to analyze the data.

You can use BSON processing functions to manipulate BSON data in SQL statements. The BSON
value functions convert BSON field values to standard SQL data types, such as INTEGER and
LVARCHAR. The BSON_GET and BSON_UPDATE functions manipulate field-value pairs. You can convert
all or part of a relational table to a BSON document with the genBSON function.

Example: Using SQL to query a collection

In the following example, a table that is named people is created with names and ages fields
that are inserted by using the interactive JavaScript™ shell interface to MongoDB:

db.createCollection("people");
db.people.insert({"name":"Anne","age":31});
db.people.insert({"name":"Bob","age":39});
db.people.insert({"name":"Charlie","age":29});

For SQL statements, the table name is people and the BSON column name is data. When you create
a collection through a MongoDB API command, the name of the BSON column is set to data.

The following statement selects the name and age fields with dot notation and displays the
results in a readable format by casting the results to JSON:

> SELECT data.name::JSON, data.age::JSON FROM people;

(expression) {"name":"Anne"}
(expression) {"age":31}

(expression) {"name":"Bob"}
(expression) {"age":39}

(expression) {"name":"Charlie"}
(expression) {"age":29}

SinoDB | About the SinoDB® JSON compatibility | 16

3 row(s) retrieved.

Related Links

BSON and JSON built-in opaque data types
BSON processing functions

Chapter

2
Wire listener

The wire listener is a mid-tier gateway server that enables communication between MongoDB,
REST API, and MQTT clients and the SinoDB® database server.

The wire listener is a Java™ application and is provided as an executable JAR file,
$INFORMIXDIR/bin/jsonListener.jar, that is included with the database server. The JAR file
provides access to the MongoDB API, the REST API, and the MQTT protocol.

MongoDB API access

You can connect to a JSON collection with the MongoDB API by using the MongoDB Wire
Protocol.

When a MongoDB client is connected to the wire listener and requests a connection to a
database, the wire listener creates a connection.

REST API access

You can connect to a JSON collection by using the REST API.

When a client is connected to the wire listener through the REST API, each database is
registered. The wire listener registers to receive session events such as create or drop
a database. If a REST request refers to a database that exists but is not registered, the
database is registered and a redirect to the root of the database is returned.

MQTT protocol access

You can connect to a JSON collection by using the MQTT protocol.

When an MQTT client publishes data to the wire listener, the wire listener creates a
connection to the database for inserting the data.

The wire listener connection properties file, named jsonListener.properties by default,
defines every operational characteristic.

When you create a database or a table through the wire listener, automatic location and
fragmentation are enabled. Databases are stored in the dbspace that is chosen by the server.
Tables are fragmented among dbspaces that are chosen by the server. More fragments are added
when tables grow.

The default logging mechanism for the wire listener is Logback. Logback is pre-configured and
installed along with the JSON components.

Related Links

SQL administration API portal: Arguments by privilege groups
Managing automatic location and fragmentation

Configuring the wire listener for the first time

You must configure the wire listener by specifying an authorized user and customizing the wire
listener configuration file.

The wire listener JAR file is included in the database server installation.

SinoDB | Wire listener | 18

If you create a server instance as a part of the SinoDB® installation process, the wire
listener is configured with default properties and started:

• A wire listener configuration file, $INFORMIXDIR/etc/jsonListener.properties, is created.

• The ifxjson user, which has REPLICATION privilege group access, is created and added to the
url parameter in the wire listener configuration file. This user ID is used by the wire
listener to connect to SinoDB®.

• The wire listener is started and connected to the MongoDB API and the database server.

If you want to use the REST API or MQTT protocol, or make other changes, edit the wire
listener configuration file and restart the wire listener.

To configure the wire listener for the first time:

1. Choose an authorized user.

An authorized user is required in wire listener connections to the database server. The
authorized user must have access to the databases and tables that are accessed through the
wire listener.

• Windows™: Specify an operating system user.

• Unix™ or Linux™: Specify an operating system user or a database user. For example, here
is the argument to create a database user in Unix™ or Linux™:

CREATE USER userID WITH PASSWORD 'password' ACCOUNT unlock PROPERTIES
 USER daemon;

2. Optional: If you want to shard data, grant the user REPLICATION privilege by running the
admin or task SQL administration API command with the grant admin argument. The ifxjson
user has REPLICATION privilege.
For example:

EXECUTE FUNCTION task('grant admin','userID','replication');

3. Create a wire listener configuration file in $INFORMIXDIR/etc with the .properties file
extension. You can use the $INFORMIXDIR/etc/jsonListener-example.properties file as a
template.

For more information, see The wire listener configuration file on page 19.
4. Customize the wire listener configuration file to your needs.

To include parameters in the wire listener, uncomment the row and customize the parameter.
The url parameter is required. All other parameters are optional.

Tip: Review the defaults for the following parameters and verify that they
are appropriate for your environment: mongo.api.verion, authentication.enable,
listener.type, listener.port, and listener.hostName.

5. If you are using a Dynamic Host Configuration Protocol (DHCP) on your IPv6 host, you must
verify that the connection information between JDBC and SinoDB® is compatible.

For example, you can connect from the IPv6 host through an IPv4 connection by using the
following steps:

a) Add a server alias to the DBSERVERALIASES configuration parameter for the wire listener
on the local host.
For example: lo_sinodb1210.

b) Add an entry to the sqlhosts file for the database server alias to the loopback address
127.0.0.1.
For example:

ol_sinodb1210 onsoctcp 127.0.0.1 9090

SinoDB | Wire listener | 19

c) In the wire listener configuration file, update the url entry with the wire listener
alias.
For example:

url=jdbc:informix-sqli://localhost:9090/sysmaster:
INFORMIXSERVER=ol_sinodb1210;

Start the wire listener.
Related Links

Running SQL commands by using the MongoDB API on page 49
JSON data sharding on page 55
CREATE USER statement (UNIX, Linux)
grant admin argument: Grant privileges to run SQL administration API commands
What is JDBC?

The wire listener configuration file

The settings that control the wire listener and the connection between the client and database
server are set in the wire listener configuration file.

The default name for the configuration file is $INFORMIXDIR/etc/jsonListener.properties. You
can rename this file, but the suffix must be .properties.

If you create a server instance during the installation process, a configuration file that is
named jsonListener.properties is automatically created with default properties, otherwise you
must manually create the configuration file. You can use the $INFORMIXDIR/etc/jsonListener-
example.properties file as a template.

In the configuration file that is created during installation, and in the template file, all
of the parameters are commented out by default. To enable a parameter, you must uncomment the
row and customize the parameter.

Important: The url parameter is required. All other parameters are optional.

• Required

• url on page
• Setup and configuration

• documentIdAlgorithm on page

• include on page
• listener.onException on page
• listener.hostName on page
• listener.port on page
• listener.type on page
• response.documents.count.default on page
• response.documents.count.maximum on page

• response.documents.size.maximum on page

• sharding.enable on page
• sharding.parallel.query.enable on page

• Command and operation configuration

• collection.informix.options on page
• command.listDatabases.sizeStrategy on page
• update.client.strategy on page

SinoDB | Wire listener | 20

• update.mode on page
• Database resource management

• database.buffer.enable on page
• database.create.enable on page
• database.dbspace on page
• database.locale.default on page
• database.log.enable on page
• dbspace.strategy on page
• fragment.count on page
• jdbc.afterNewConnectionCreation on page

• MongoDB compatibility

• compatible.maxBsonObjectSize.enable on page
• mongo.api.version on page
• update.one.enable on page

• Performance

• delete.preparedStatement.cache.enable on page
• insert.batch.enable on page
• insert.batch.queue.enable on page
• insert.batch.queue.flush.interval on page
• index.cache.enable on page
• index.cache.update.interval on page
• insert.preparedStatement.cache.enable on page
• preparedStatement.cache.enable on page
• preparedStatement.cache.size on page

• Security

• authentication.enable on page
• authentication.localhost.bypass.enable on page
• command.blacklist on page
• db.authentication on page
• listener.admin.ipAddress on page
• listener.authentication.timeout on page
• listener.http.accessControlAllowCredentials on page
• listener.http.accessControlAllowHeaders on page
• listener.http.accessControlAllowMethods on page
• listener.http.accessControlAllowOrigin on page
• listener.http.accessControlExposeHeaders on page
• listener.http.accessControlMaxAge on page
• listener.http.headers on page
• listener.rest.cookie.domain on page
• listener.rest.cookie.httpOnly on page
• listener.rest.cookie.length on page
• listener.rest.cookie.name on page
• listener.rest.cookie.path on page
• listener.rest.cookie.secure on page
• security.sql.passthrough on page

• Wire listener resource management

SinoDB | Wire listener | 21

• listener.connectionPool.closeDelay.time on page
• listener.connectionPool.closeDelay.timeUnit on page
• listener.idle.timeout on page
• listener.input.buffer.size on page
• listener.memoryMonitor.enable on page
• listener.memoryMonitor.allPoint on page
• listener.memoryMonitor.diagnosticPoint on page
• listener.memoryMonitor.zeroPoint on page
• listener.output.buffer.size on page
• listener.pool.admin.enable on page
• listener.pool.keepAliveTime on page
• listener.pool.queue.size on page
• listener.pool.size.core on page
• listener.pool.size.maximum on page

• listener.socket.accept.timeout on page
• listener.socket.read.timeout on page
• pool.connections.maximum on page

• pool.idle.timeout on page
• pool.idle.timeunit on page
• pool.lenient.return.enable on page
• pool.lenient.dispose.enable on page
• pool.semaphore.timeout on page
• pool.semaphore.timeunit on page
• pool.service.interval on page
• pool.service.threads on page
• pool.service.timeunit on page
• pool.size.initial on page
• pool.size.minimum on page

• pool.size.maximum on page

• pool.type on page
• pool.typeMap.strategy on page
• response.documents.size.minimum on page

• timeseries.loader.connections on page

Required parameter
You must configure the url parameter before using the wire listener.

url

This required parameter specifies the host name, port number, user ID, and password that
are used in connections to the database server.

You must specify the sysmaster database in the url parameter. That database is used for
administrative purposes by the wire listener.

url =
jdbc : informix-sqli : // hostname : portnum
/ sysmaster :
[USER = userid ; PASSWORD = password]
You can include additional JDBC properties in the url parameter such as INFORMIXCONTIME,
INFORMIXCONRETRY, LOGINTIMEOUT, and IFX_SOC_TIMEOUT. For a list of SinoDB® environment

SinoDB | Wire listener | 22

variables that are supported by the JDBC driver, see SinoDB® environment variables with the
SinoDB® JDBC Driver.
hostname:portnum

The host name and port number of your computer. For example, localhost:9090.

USER=userid
This optional attribute specifies the user ID that is used in connections to the SinoDB®

database server. If you plan to use this connection to establish or modify collection
shards by using the SinoDB® sharding capability, the specified user must be granted the
REPLICATION privilege group access.

If you do not specify the user ID and password, the JDBC driver uses operating system
authentication and all wire listener actions are run by using the user ID and password
of the operating system user who runs the wire listener start command.

PASSWORD=password
This optional attribute specifies the password for the specified user ID.

Setup and configuration
These parameters provide setup and configuration options.

documentIdAlgorithm

This optional parameter determines the algorithm that is used to generate the unique
SinoDB® identifier for the ID column that is the primary key on the collection table. The
_id field of the document is used as the input to the algorithm. The default value is
documentIdAlgorithm=ObjectId.

documentIdAlgorithm=
{ ObjectId | SHA-1 | SHA-256 | SHA-512 }

ObjectId

Indicates that the string representation of the ObjectId is used if the _id field is of
type ObjectId; otherwise, the MD5 algorithm is used to compute the hash of the contents
of the _id field.

• The string representation of an ObjectId is the hexadecimal representation of the 12
bytes that comprise an ObjectId.

• The MD5 algorithm provides better performance than the secure hashing algorithms
(SHA).

ObjectId is the default value and it is suitable for most situations.

Important: Use the default unless a unique constraint violation is reported even
though all documents have a unique _id field. In that case, you might need to use
a non-default algorithm, such as SHA-256 or SHA-512.

SHA-1

Indicates that the SHA-1 hashing algorithm is used to derive an identifier from the _id
field.

SHA-256

Indicates that the SHA-256 hashing algorithm is used to derive an identifier from the
_id field.

SHA-512

Indicates that the SHA-512 hashing algorithm is used to derive an identifier from the
_id field. This option generates the most unique values, but uses the most processor
resources.

SinoDB | Wire listener | 23

include

This optional parameter specifies the properties file to reference. The path can be
absolute or relative. For more information, see Running multiple wire listeners on page 44.
include=
properties_file

listener.onException

This optional parameter specifies an ordered list of actions to take if an exception occurs
that is not handled by the processing layer.

listener.onException =
{ reply | closeSession | shutdownListener }

reply

When an unhandled exception occurs, reply with the exception message. This is the
default value.

closeSession

When an unhandled exception occurs, close the session.

shutdownListener

When an unhandled exception occurs, shut down the wire listener.

listener.hostName

This optional parameter specifies the host name of the wire listener. The host name
determines the network adapter or interface that the wire listener binds the server socket
to.

Tip: If you enable the wire listener to be accessed by clients on remote hosts,
turn on authentication by using the authentication.enable parameter.

listener.hostName=
{ localhost | hostname | * }
localhost

Bind the wire listener to the localhost address. The wire listener is not accessible
from clients on remote machines. This is the default value.

hostname
The host name or IP address of host machine where the wire listener binds to.

*

The wire listener can bind to all interfaces or addresses.

listener.port

This optional parameter specifies the port number to listen on for incoming connections
from MongoDB clients. This value can be overridden from the command line by using the -port
argument. The default value is 27017.

Important: If you specify a port number that is less than 1024, the user that
starts the wire listener might require additional operating system privileges.

listener.port=
{ 27017 | port_number }

listener.type

This optional parameter specifies the type of wire listener to start.

listener.type=
{ mongo | rest | mqtt }

mongo

Connect the wire listener to the MongoDB API. This is the default value.

SinoDB | Wire listener | 24

rest

Connect the wire listener to the REST API.

mqtt

Connect the wire listener to the MQTT protocol.

response.documents.count.default

This optional parameter specifies the default number of documents in a single response to a
query. The default value is 100.

response.documents.count.default =
{ 100 | default_docs }

response.documents.count.maximum

This optional parameter specifies the maximum number of documents in a single response to a
query. The default value is 10000.

response.documents.count.maximum=
{ 10000 | max_docs }

response.documents.size.maximum

This optional parameter specifies the maximum size, in bytes, of all documents in a single
response to a query. The default value is 1048576.

response.documents.size.maximum=
{ 1048576 | max_size }

sharding.enable

This optional parameter indicates whether to enable the use of commands and queries on
sharded data.

sharding.enable=
{ false | true }

false

Do not enable the use of commands and queries on sharded data. This is the default
value.

true

Enable the use of commands and queries on sharded data.

sharding.parallel.query.enable

This optional parameter indicates whether to enable the use of parallel sharded queries.
Parallel sharded queries require that the SHARD_ID configuration parameter be set to unique
IDs on all shard servers. The sharding.enable parameter must also be set to true.

sharding.parallel.query.enable =
{ false | true }

false

Do not enable parallel sharded queries. This is the default value.

true

Enable parallel sharded queries.

Command and operation configuration
These parameters provide configuration options for JSON commands and operations.

collection.informix.options

This optional parameter specifies which table options for shadow columns or auditing to use
when creating a JSON collection.

collection.informix.options=[{ [{ , | "audit" | "crcols" | "erkey" | "replcheck" |
"vercols" }] }]

SinoDB | Wire listener | 25

audit

Use the AUDIT option of the CREATE TABLE statement to create a table to be included in
the set of tables that are audited at the row level if selective row-level is enabled.

crcols

Use the CRCOLS option of the CREATE TABLE statement to create two shadow columns that
Enterprise Replication uses for conflict resolution.

erkey

Use the ERKEY option of the CREATE TABLE statement to create the ERKEY shadow columns
that Enterprise Replication uses for a replication key.

replcheck

Use the REPLCHECK option of the CREATE TABLE statement to create the ifx_replcheck
shadow column that Enterprise Replication uses for consistency checking.

vercols

Use the VERCOLS option of the CREATE TABLE statement to create two shadow columns that
SinoDB® uses to support update operations on secondary servers.

command.listDatabases.sizeStrategy

This optional parameter specifies a strategy for calculating the size of your database when
the MongoDB listDatabases command is run. The listDatabases command estimates the size of
all collections and collection indexes for each database. However, relational tables and
indexes are excluded from this size calculation.

Important: The MongoDB listDatabases command performs expensive and CPU-intensive
computations on the size of each database in the database server instance. You can
decrease the expense by using the command.listDatabases.sizeStrategy parameter.

command.listDatabases.sizeStrategy={ { estimate | { estimate:n} | compute | none |
perDatabaseSpace } }

estimate

Estimate the size of the database by sampling documents in every collection. This is the
default value. This strategy is the equivalent of {estimate: 1000}, which takes a sample
size of 0.1% of the documents in every collection. This is the default value.

command.listDatabases.sizeStrategy=estimate

estimate: n
Estimate the size of the database by sampling one document for every n documents in
every collection. The following example estimates the collection size by using sample
size of 0.5% or 1/200th of the documents:

command.listDatabases.sizeStrategy={estimate:200}

compute

Compute the exact size of the database.

command.listDatabases.sizeStrategy=compute

none

List the databases but do not compute the size. The database size is listed as 0.

command.listDatabases.sizeStrategy=none

SinoDB | Wire listener | 26

perDatabaseSpace

Calculate the size of a database by adding the sizes for all dbspaces, sbspaces, and
blobspaces that are assigned to the tenant database.

Important: The perDatabaseSpace option applies only to tenant databases that are
created by the multi-tenancy feature.

update.client.strategy

This optional parameter specifies the method that is used by the wire listener to send
updates to the database server. When the wire listener does the update processing, it
queries the server for the existing document and then updates the document.

update.client.strategy={ { updatableCursor | deleteInsert } }

updatableCursor

Updates are sent to the database server by using an updatable cursor. This is the
default value.

deleteInsert

The original document is deleted when the updated document is inserted.

Important: If the collection is sharded, you must use this method.

update.mode

This optional parameter determines where document updates are processed. The default value
is update.mode=mixed.

update.mode={ { mixed | client } }

client

Use the wire listener to process updates. You must use this mode if you enable sharding
and want to allow the updating of shard key field values.

mixed

Attempt to process updates on the database server first, then fallback to the wire
listener. This is the default value.

Database resource management
These parameters provide database resource management options.

database.buffer.enable

Prerequisite: database.log.enable=true

This optional parameter indicates whether to enable buffered logging when you create a
database by using the wire listener.

database.buffer.enable=
{ true | false }

true

Enable buffered logging. This is the default value.

false

Do not enable buffered logging.

database.create.enable

This optional parameter indicates whether to enable the automatic creation of a database,
if a database does not exist.

database.create.enable=
{ true | false }

true

If a database does not exist, create a database. This is the default value.

SinoDB | Wire listener | 27

false

If a database does not exist, do not create a database. With this option, you can access
only existing databases.

database.dbspace

Prerequisite: dbspace.strategy=fixed

This optional parameter specifies the name of the dbspace databases that are created. The
default value is database.dbspace=rootdbs.

database.dbspace=
{ rootdbs | dbspace_name }

database.locale.default

This optional parameter specifies the default locale to use when a database is created by
using the wire listener. The default value is en_US.utf8.

database.locale.default=
{ en_US.utf8 | locale }

database.log.enable

This optional parameter indicates whether to create databases that are enabled for logging.

database.log.enable=
{ true | false }

true

Create databases that are enabled for logging. This is the default value. Use the
database.buffer.enable parameter to enable buffered logging.

false

Do not create databases that are enabled for logging.

dbspace.strategy

This optional parameter specifies the strategy to use when determining the location of new
databases, tables, and indexes.

dbspace.strategy=
{ autolocate | fixed }

autolocate

The database server automatically determines the dbspace for the new databases, tables,
and indexes. This is the default value.

fixed

Use a specific dbspace, as specified by the database.dbspace property.

fragment.count

This optional parameter specifies the number of fragments to use when creating a
collection. If you specify 0, the database server determines the number of fragments to
create. If you specify a fragment_num greater than 0, that number of fragments are created

when the collection is created. The default value is 0.

fragment.count=
{ 0 | fragment_num }

jdbc.afterNewConnectionCreation

This optional parameter specifies one or more SQL commands to run after a new connection to
the database is created.

jdbc.afterNewConnectionCreation=[,"sql_command"]

SinoDB | Wire listener | 28

For example, to accelerate queries run through the wire listener by using Warehouse
Accelerator:

jdbc.afterNewConnectionCreation=["SET ENVIRONMENT USE_DWA 'ACCELERATE ON'"]

MongoDB compatibility
These parameters provide options for MongoDB compatibility.

compatible.maxBsonObjectSize.enable

This optional parameter indicates whether the maximum BSON object size is compatible with
MongoDB.

Tip: If you insert a BSON document by using an SQL operation, SinoDB® supports a
maximum document size of 2 GB.

compatible.maxBsonObjectSize.enable=
{ false | true }

false

Use a maximum document size of 256 MB with the wire listener. This is the default value.

true

Use a maximum document size of 16 MB. The maximum document size for MongoDB is 16 MB.

mongo.api.version

This optional parameter specifies the MongoDB API version with which the wire listener is
compatible. The version affects authentication methods as well as MongoDB commands.

mongo.api.version =
{ 2.6 | 2.4 | 3.0 }

Important: Do not set mongo.api.version=3.0 if you want to use the REST API or
database server authentication. See User authentication with the wire listener on page 46.

update.one.enable

This optional parameter indicates whether to enable support for updating a single JSON
document.

Important: The update.one.enable parameter applies to JSON collections only. For
relational tables, the MongoDB multi-parameter is ignored and all documents that
meet the query criteria are updated.

update.one.enable=
{ false | true }

false

All collection updates are treated as multiple JSON document updates. This is the
default value.

With the update.one.enable=false setting, the MongoDB db.collection.update multi-
parameter is ignored and all documents that meet the query criteria are updated.

true

Allow updates on collections to a single document or multiple documents.

With the update.one.enable=true setting, the MongoDB db.collection.update multi-
parameter is accepted. The db.collection.update multi-parameter controls whether you can
update a single document or multiple documents.

Performance
These parameters provide performance options for databases and collections.

SinoDB | Wire listener | 29

delete.preparedStatement.cache.enable

This optional parameter indicates whether to cache prepared statements that delete
documents for reuse.

delete.preparedStatement.cache.enable =
{ true | false }

true

Use a prepared statement cache for statements that delete documents. This is the default
value.

false

Do not use a prepared statement cache for statements that delete documents. A new
statement is prepared for each query.

insert.batch.enable

If multiple documents are sent as a part of a single INSERT statement, this optional
parameter indicates whether to batch document inserts operations into collections.

insert.batch.enable =
{ true | false }

true

Batch document inserts into collections by using JDBC batch calls to perform the insert
operations. This is the default value.

false

Do not batch document insert operations into collections.

insert.batch.queue.enable

This optional parameter indicates whether to queue INSERT statements into larger batches.
You can improve insert performance by queuing INSERT statements, however, there is
decreased durability.

This parameter batches all INSERT statements, even a single INSERT statement. These
batched INSERT statements are flushed at the interval that is specified by the
insert.batch.queue.flush.interval parameter, unless another operation arrives on the same
collection. If another operation arrives on the same collection, the batch inserts are
immediately flushed to the database server before proceeding with the next operation.

insert.batch.queue.enable =
{ false | true }

false

Do not queue INSERT statements. This is the default.

true

Queue INSERT statements into larger batches. Use the insert.batch.queue.flush.interval
parameter to specify the amount of time between insert queue flushes.

insert.batch.queue.flush.interval

Prerequisite: insert.batch.queue.enable=true

This optional parameter specifies the number of milliseconds between flushes of the insert
queue to the database server. The default value is insert.batch.queue.flush.interval=100.

insert.batch.queue.flush.interval =
{ 100 | flush_interval_time }

index.cache.enable

This optional parameter indicates whether to enable index caching on collections. To write
the most efficient queries, the wire listener must be aware of the existing BSON indexes on
your collections.

index.cache.enable =

SinoDB | Wire listener | 30

{ true | false }

true

Cache indexes on collections. This is the default value.

false

Do not cache indexes on collections. The wire listener queries the database for indexes
each time a collection query is translated to SQL.

index.cache.update.interval

This optional parameter specifies the amount of time, in seconds, between updates to the
index cache on a collection table. The default value is index.cache.update.interval=120.

index.cache.update.interval =
{ 120 | cache_update_interval }

insert.preparedStatement.cache.enable

This optional parameter indicates whether to cache the prepared statements that are used to
insert documents.

insert.preparedStatement.cache.enable =
{ true | false }

true

Cache the prepared statements that are used to insert documents. This is the default
value.

false

Do not cache the prepared statements that are used to insert documents.

preparedStatement.cache.enable

This optional parameter indicates whether to cache prepared statements for reuse.

preparedStatement.cache.enable =
{ true | false }

true

Use a prepared statement cache. This is the default value.

false

Do not use a prepared statement cache. A new statement is prepared for each query.

preparedStatement.cache.size

This optional parameter specifies the size of the least-recently used (LRU) map that is
used to cache prepared statements. The default value is preparedStatement.cache.size=20.

preparedStatement.cache.enable =
{ 20 | LRU_size }

Security
The parameters provide security enablement options.

authentication.enable

This optional parameter indicates whether to enable user authentication.

You can choose to authenticate users through the wire listener or in the database server.

authentication.enable=
{ false | true }

false

Do not authenticate users. This is the default value.

true

Authenticate users. Use the authentication.localhost.bypass.enable parameter to control
the type of authentication.

SinoDB | Wire listener | 31

authentication.localhost.bypass.enable

Prerequisite: authentication.enable=true

If you connect from the localhost to the SinoDB® admin database, and the admin database
contains no users, this optional parameter indicates whether to grant full administrative
access.

The SinoDB® admin database is similar to the MongoDB admin database. The SinoDB®

authentication.localhost.bypass.enable parameter is similar to the MongoDB
enableLocalhostAuthBypass parameter.

authentication.localhost.bypass.enable=
{ true | false }

true

Grant full administrative access to the user. This is the default value.

false

Do not grant full administrative access to the user.

command.blacklist

This optional parameter lists commands that are removed from the command registry and
cannot be called. By default, the black list is empty.

command.blacklist = [, command]
db.authentication

This optional parameter specifies the user authentication method. See User authentication with
the wire listener on page 46.
db.authentication =
{ mongodb-cr | informix-mongodb-cr }

mongdb-cr

Authenticate through the wire listener with a MongoDB authentication method. The MongoDB
authentication method depends on the setting of the mongo.api.version parameter.

informix-mongodb-cr

Authenticate through the database server with a pluggable authentication module.

listener.admin.ipAddress

This optional parameter specifies the IP address for the administrative host. Must be a
loopback IP address. The default value is 127.0.0.1.

Important: If you specify an address that is not a loopback IP address, an attacker
might perform a remote privilege escalation and obtain administrative privileges
without knowing a user password.

listener.admin.ipAddress = ip_address
listener.authentication.timeout

This optional parameter specifies the number of milliseconds that the wire listener waits
for a client connection to authenticate. The default value is 0, which indicates that the
wire listener waits indefinitely for client connections to authenticate.

listener.authentication.timeout = milliseconds
listener.http.accessControlAllowCredentials

This optional parameter indicates whether to display the response to the request when
the omit credentials flag is not set. When this parameter is part of the response to a
preflight request, it indicates that the actual request can include user credentials.

listener.http.accessControlAllowCredentials=
{ true | false }

SinoDB | Wire listener | 32

true

Display the response to the request. This is the default value.

false

Do not display the response to the request.

listener.http.accessControlAllowHeaders

This optional parameter, which is part of the response to a preflight request,
specifies the header field names that are used during the actual request.
You must specify the value by using a JSON array of strings. Each string in
the array is the case-insensitive header field name. The default value is
listener.http.accessControlAllowHeaders=["accept","cursorId","content-type"].

listener.http.accessControlAllowHeaders=
[{ "accept","cursorId","content-type" | , "header_field_name" }]
For example, to allow the headers foo and bar in a request:

listener.http.accessControlAllowHeaders=["foo","bar"]

listener.http.accessControlAllowMethods

This optional parameter, which is part of the response to a preflight request,
specifies the REST methods that are used during the actual request. You
must specify the value by using a JSON array of strings. Each string in the
array is the name of an HTTP method that is allowed. The default value is
listener.http.accessControlAllowMethods=["GET","PUT","POST","DELETE","OPTIONS"].

listener.http.accessControlAllowMethods=
[{ "GET","PUT","POST","DELETE","OPTIONS" | , "rest_method" }]

listener.http.accessControlAllowOrigin

This optional parameter specifies which uniform resource identifiers (URI) are authorized
to receive responses from the REST listener when processing cross-origin resource sharing
(CORS) requests. You must specify the value by using a JSON array of strings, with a
separate string in the array for each value for the HTTP Origin header in a request. The
values that are specified in this parameter are validated to ensure that they are identical
to the Origin header.

HTTP requests include an Origin header that specifies the URI that served the resource that
processes the request. When a resource from a different origin is accessed, the resource is
validated to determine whether sharing is allowed.

The default value, listener.http.accessControlAllowOrigin={"$regex":".*"}, means that any
origin is allowed to perform a CORS request.

listener.http.accessControlAllowOrigin=
{{ "$regex":".*" | authorized_URI }}
Here are some usage examples:

• Grant access to the localhost:

listener.http.accessControlAllowOrigin="http://localhost"

• Grant access to all hosts in the subnet 10.168.8.0/24. The first 3 segments are
validated as 10, 168, and 8, and the fourth segment is validated as a value 1 - 255:

listener.http.accessControlAllowOrigin={"$regex":"^http://10\\\\.168\\\\.8\\\\.([01]?
\\\\
d\\\\d?|2[0-4]\\\\d|25[0-5])$" }

SinoDB | Wire listener | 33

• Grant access to all hosts in the subnet 10.168.8.0/24. The first 3 segments are
validated as 10, 168, and 8, and the fourth segment must contain one or more digits:

listener.http.accessControlAllowOrigin={"$regex":
"^http://10\\\\.168\\\\.8\\\\.\\\\d+$" }

listener.http.accessControlExposeHeaders

This optional parameter specifies which headers of a CORS request to expose to the
API. You must specify the value by using a JSON array of strings. Each string in the
array is the case-insensitive name of a header to be exposed. The default value is
listener.http.accessControlExposeHeaders=["cursorId"].

listener.http.accessControlExposeHeaders=
{ ["cursorId"] | CORS_headers }
For example, to expose the headers foo and bar to a client:

listener.http.accessControlExposeHeaders=["foo","bar"]

listener.http.accessControlMaxAge

This optional parameter specifies the amount of time, in seconds, that the result of a
preflight request is cached in a preflight result cache. A value of 0 indicates that the
Access-Control-Max-Age header is not included in the response to a preflight request. A
value greater than 0 indicates that the Access-Control-Max-Age header is included in the
response to a preflight request.

The default value is listener.http.accessControlMaxAge=0.

listener.http.accessControlMaxAge=
{ 0 | preflight_result_cache_time }

listener.http.headers

This optional parameter specifies the information to include in the HTTP headers of
responses, as a JSON document. The default value is no additional information in the HTTP
headers.

listener.http.headers = JSON_document
For example, you set this parameter to the following value:

listener.http.headers={ "Access-Control-Allow-Origin" : "http://192.168.0.1",
"Access-Control-Allow-Credentials" : "true" }

Then the HTTP headers for all responses look like this:

Access-Control-Allow-Origin : http://192.168.0.1
Access-Control-Allow-Credentials : true

listener.rest.cookie.domain

This optional parameter specifies the name of the cookie that is created by the REST wire
listener. If not specified, the domain is the default value as determined by the Apache
Tomcat web server.

listener.rest.cookie.domain=
{ [rest_cookie_name] }

listener.rest.cookie.httpOnly

This optional parameter indicates whether to set the HTTP-only flag.

listener.rest.cookie.httpOnly=
{ true | false }

SinoDB | Wire listener | 34

true

Set the HTTP-only flag. This flag helps to prevent cross-site scripting attacks. This is
the default value.

false

Do not set the HTTP-only flag.

listener.rest.cookie.length

This optional parameter specifies the length, in bytes, of the cookie value that
is created by the REST wire listener, before Base64 encoding. The default value is
listener.rest.cookie.length=64.

listener.rest.cookie.length=
{ 64 | rest_cookie_length }

listener.rest.cookie.name

This optional parameter specifies the name of the cookie that is created
by the REST wire listener to identify a session. The default value is
listener.rest.cookie.name=informixRestListener.sessionId.

listener.rest.cookie.name=
{ informixRestListener.sessionId | rest_cookie_name }

listener.rest.cookie.path

This optional parameter specifies the path of the cookie that is created by the REST wire
listener. The default value is listener.rest.cookie.path=/.

listener.rest.cookie.path=
{ / | rest_cookie_path }

listener.rest.cookie.secure

This optional parameter indicates whether the cookies that are created by the REST wire
listener have the secure flag on. The secure flag prevents the cookies from being used over
an unsecure connection.

listener.rest.cookie.secure=
{ false | true }

false

Turn off the secure flag. This is the default value.

true

Turn on the secure flag.

security.sql.passthrough

This optional parameter indicates whether to enable support for issuing SQL statements by
using JSON documents.

security.sql.passthrough =
{ false | true }

false

Disable the ability to issue SQL statements by using the MongoDB API. This is the
default.

true

Allow SQL statements to be issued by using the MongoDB API.

Wire listener resource management
These parameters provide wire listener resource management options.

listener.connectionPool.closeDelay.time

This optional parameter specifies the amount of time to keep a connection pool open
after the last client disconnects. When the existing connection pool is open, the next

SinoDB | Wire listener | 35

connection can connect faster by reusing the existing pool instead of creating a new
connection pool. The default value is 0, which indicates that the connection pool is closed
immediately after the last client disconnects. A positive integer value for time specifies
the number of time units to keep the connection pool open. The unit of time is set by the
listener.connectionPool.closeDelay.timeUnit parameter.

listener.connectionPool.closeDelay.time =
{ 0 | time }

listener.connectionPool.closeDelay.timeUnit

This optional parameter specifies the time unit for the
listener.connectionPool.closeDelay.time parameter. The unit can be NANOSECONDS,
MICROSECONDS, MILLISECONDS, SECONDS, MINUTES, HOURS, or DAYS. The default value is SECONDS.

listener.connectionPool.closeDelay.timeUnit =
{ SECONDS | unit }

listener.idle.timeout

This optional parameter specifies the amount of time, in milliseconds, that a client
connection to the wire listener can idle before it is forcibly closed. You can use this
parameter to close connections and free associated resources when clients are idle. The
default value is 0 milliseconds.

Important: When set to a nonzero value, the wire listener socket that is used to
communicate with a MongoDB client is forcibly closed after the specified time. To
the client, the forcible closure appears as an unexpected disconnection from the
server the next time there is an attempt to write to the socket.

listener.idle.timeout =
{ 0 | idle_time }

listener.input.buffer.size

This optional parameter specifies the size, in MB, of the input buffer for each wire
listener socket. The default value is 8192 MB.

listener.input.buffer.size =
{ 8192 | input_buffer_size }

listener.memoryMonitor.enable

This optional parameter enables the wire listener memory monitor. When memory usage for the
wire listener is high, the memory monitor attempts to reduce resources, such as removing
cached JDBC prepared statements, removing idle JDBC connections from the connection pools,
and reducing the maximum size of responses.

listener.memoryMonitor.enable =
{ true | false }

true

Enable the memory monitor. This is the default.

false

Disable the memory monitor.

listener.memoryMonitor.allPoint

This optional parameter specifies the maximum percentage of heap usage before the memory
monitor reduces resources. The default value is 80.

listener.memoryMonitor.allPoint = percentage
This parameter is effective when the listener.memoryMonitor.enable parameter is set to
true.

listener.memoryMonitor.diagnosticPoint

This optional parameter specifies the percentage of heap usage before diagnostic
information about memory usage is logged. The default value is 99.

SinoDB | Wire listener | 36

listener.memoryMonitor.diagnosticPoint = percentage
This parameter is effective when the listener.memoryMonitor.enable parameter is set to
true.

listener.memoryMonitor.zeroPoint

This optional parameter specifies the percentage of heap usage before the memory manager
reduces resource usage to the lowest possible levels. The default value is 95.

listener.memoryMonitor.zeroPoint = percentage
This parameter is effective when the listener.memoryMonitor.enable parameter is set to
true.

listener.output.buffer.size

This optional parameter specifies the size, in MB, of the output buffer for each listener
socket. The default value is 8192 MB.

listener.output.buffer.size =
{ 8192 | output_buffer_size }

listener.pool.admin.enable

This optional parameter enables a separate thread pool for connections from the
administrative IP address, which is set by the listener.admin.ipAddress parameter. The
default value is false. A separate thread pool ensures that administrative connections
succeed even if the listener thread pool lacks available resources.

listener.pool.admin.enable = { false | true }

false

Prevents a separate thread pool. This is the default.

false

Creates a separate thread pool for administrative connections.

listener.pool.keepAliveTime

This optional parameter specifies the amount of time, in seconds, that threads above the
core pool size are allowed to idle before they are removed from the wire listener JDBC
connection pool. The default value is 60 seconds.

listener.pool.keepAliveTime =
{ 60 | thread_idle }

listener.pool.queue.size

This optional parameter specifies the number of requests to queue above the core wire
listener pool size before expanding the pool size up to the maximum. A positive integer
specifies the queue size to use before expanding the pool size up to the maximum.

listener.pool.queue.size =
{ 0 | -1 }

0

Do not allocate a queue size for tasks. All new sessions are either run on an available
or new thread up to the maximum pool size, or are rejected if the maximum pool size is
reached. This is the default value.

-1

Allocate an unlimited queue size for tasks.

listener.pool.size.core

This optional parameter specifies the maximum sustained size of the thread pool that
listens for incoming connections from MongoDB clients. The default value is 128.

listener.pool.size.core =
{ 128 | max_thread_size }

SinoDB | Wire listener | 37

listener.pool.size.maximum

This optional parameter specifies the maximum peak size of the thread pool that listens for
incoming connections from MongoDB clients. The default value is 1024.

listener.pool.size.maximum =
{ 1024 | max_peak_thread_size }

listener.socket.accept.timeout

This optional parameter specifies the number of milliseconds that a server socket waits
for an accept() function. The default value is 1024. The value of 0 indicates to wait
indefinitely. The value of this parameter can affect how quickly the wire listener shuts
down.

listener.socket.accept.timeout = milliseconds
listener.socket.read.timeout

This optional parameter specifies the number of milliseconds to block when calling a read()
function on the socket input stream. The default value is 1024. A value of 0 might prevent
the wire listener from shutting down because the threads that poll the socket might never
unblock.

listener.socket.read.timeout = milliseconds
pool.connections.maximum

This optional parameter specifies the maximum number of active connections to a database.
The default value is 50.

pool.connections.maximum =
{ 50 | max_active_connect }

pool.idle.timeout

This optional parameter specifies the minimum amount of time that an idle connection is in
the idle pool before it is closed. The default value is 60 and the default time unit is
seconds.

Important: Set the unit of time in the pool.idle.timeunit parameter. The default
value is seconds.

pool.idle.timeout =
{ 60 | min_idle_pool }

pool.idle.timeunit

Prerequisite: pool.idle.timeout=time

This optional parameter specifies the unit of time that is used to scale the
pool.idle.timeout parameter.

pool.idle.timeunit =
{ SECONDS | NANOSECONDS | MICROSECONDS | MILLISECONDS | MINUTES | HOURS | DAYS }

SECONDS

Use seconds as the unit of time. This is the default value.

NANOSECONDS

Use nanoseconds as the unit of time.

MICROSECONDS

Use microseconds as the unit of time.

MILLISECONDS

Use milliseconds as the unit of time.

MINUTES

Use minutes as the unit of time.

SinoDB | Wire listener | 38

HOURS

Use hours as the unit of time.

DAYS

Use days as the unit of time.

pool.lenient.return.enable

This optional parameter suppresses the following checks on a connection that is being
returned that might throw exceptions:

• An attempt to return a pooled connection that is already returned.

• An attempt to return a pooled connection that is owned by another pool.

• An attempt to return a pooled connection that is an incorrect type.

pool.lenient.return.enable = { false | true }

false

Connection checks are enabled. This is the default.

false

Connection checks are disabled.

pool.lenient.dispose.enable

This optional parameter suppresses the checks on a connection that is being disposed of
that might throw exceptions.

pool.lenient.dispose.enable = { false | true }

false

Connection checks are enabled. This is the default.

false

Connection checks are disabled.

pool.semaphore.timeout

This optional parameter specifies the amount of time to wait to acquire a permit for a
database connection. The default value is 5 and the default time unit is seconds.

Important: Set the unit of time in the pool.semaphore.timeunit parameter.

pool.semaphore.timeout =
{ 5 | wait_time }

pool.semaphore.timeunit

Prerequisite: pool.semaphore.timeout=wait_time

This optional parameter specifies the unit of time that is used to scale the
pool.semaphore.timeout parameter.

pool.semaphore.timeunit =
{ SECONDS | NANOSECONDS | MICROSECONDS | MILLISECONDS | MINUTES | HOURS | DAYS }

SECONDS

Use seconds as the unit of time. This is the default value.

NANOSECONDS

Use nanoseconds as the unit of time.

MICROSECONDS

Use microseconds as the unit of time.

MILLISECONDS

Use milliseconds as the unit of time.

SinoDB | Wire listener | 39

MINUTES

Use minutes as the unit of time.

HOURS

Use hours as the unit of time.

DAYS

Use days as the unit of time.

pool.service.interval

This optional parameter specifies the amount of time to wait between scans of the idle
connection pool. The idle connection pool is scanned for connections that can be closed
because they have exceeded their maximum idle time. The default value is 30.

Important: Set the unit of time in the pool.service.timeunit parameter.

pool.service.interval =
{ 30 | wait_time }

pool.service.threads

This optional parameter specifies the number of threads to use for the maintenance of
connection pools that share a common service thread pool. The default value is 1.

pool.service.threads = number
pool.service.timeunit

Prerequisite: pool.service.interval=wait_time

This optional parameter specifies the unit of time that is used to scale the
pool.service.interval parameter.

pool.service.timeunit =
{ SECONDS | NANOSECONDS | MICROSECONDS | MILLISECONDS | MINUTES | HOURS | DAYS }

SECONDS

Use seconds as the unit of time. This is the default value.

NANOSECONDS

Use nanoseconds as the unit of time.

MICROSECONDS

Use microseconds as the unit of time.

MILLISECONDS

Use milliseconds as the unit of time.

MINUTES

Use minutes as the unit of time.

HOURS

Use hours as the unit of time.

DAYS

Use days as the unit of time.

pool.size.initial

This optional parameter specifies the initial size of the idle connection pool. The default
value is 0.

pool.size.initial =
{ 0 | idle_pool_initial_size }

pool.size.minimum

This optional parameter specifies the minimum size of the idle connection pool. The default
value is 0.

SinoDB | Wire listener | 40

pool.size.minimum =
{ 0 | idle_pool_min_size }

pool.size.maximum

This optional parameter specifies the maximum size of the idle connection pool. The default
value is 50.

pool.size.maximum =
{ 50 | idle_pool_max_size }

pool.type

This optional parameter specifies the type of pool to use for JDBC connections. The
available pool types are:

pool.type =
{ basic | none | advanced | perThread }

basic

Thread pool maintenance of idle threads is run each time that a connection is returned.
This is the default value.

none

No thread pooling occurs. Use this type for debugging purposes.

advanced

Thread pool maintenance is run by a separate thread.

perThread

Each thread is allocated a connection for its exclusive use.

pool.typeMap.strategy

This optional parameter specifies the strategy to use for distribution and synchronization
of the JDBC type map for each connection in the pool.

pool.typeMap.strategy =
{ copy | clone | share }

copy

Copy the connection pool type map for each connection. This is the default value.

clone

Clone the connection pool type map for each connection.

share

Share a single type map between all connections. You must use this strategy with a
thread-safe type map.

response.documents.size.minimum

This optional parameter specifies the number of bytes for the lower threshold for the
maximum response size, which is set by the response.documents.size.maximum parameter.
The memory manager can reduce the response size to this size when resources are low. The
default value is 65536 bytes.

response.documents.size.minimum = bytes
This parameter is effective when the listener.memoryMonitor.enable parameter is set to
true.

timeseries.loader.connections

This optional parameter specifies the number of connections between each time series
table and the MQTT wire listener for loading time series data. The default value is 10
connections per table.

timeseries.loader.connections = { 10 number }
Related Links

Collection methods on page 66

SinoDB | Wire listener | 41

REST API syntax on page 92

Modifying the wire listener configuration file
You can modify the wire listener connection properties that are set in the configuration file.

The wire listener configuration file, named %INFORMIXDIR%\etc\jsonListener.properties by
default, controls the wire listener and the connection between the client and database server.

To modify the wire listener configuration file:

1. Stop the wire listener.

2. Update the wire listener configuration file.

3. Start the wire listener.

Related Links

The wire listener configuration file on page 19
Stopping the wire listener on page 45

Wire listener command line options

You can use command line options to control the wire listener.

Syntax
java
-cp pathToListener
com.ibm.nosql.server.ListenerCLI
-config properties_file
{ -start [-logfilelog_file] [-loglevel { error | warn | info | debug | trace }] [-
port { 27017 port_number }] | -stop [-wait { 10 wait_time }] }
[-version]
[-buildInformation]

Argument Purpose

-cp pathToListener Specifies the fully qualified or relative path to the jsonListener.jar
file.

com.ibm.nosql.server.ListenerCLISpecifies the Java™ main method for the JSON wire listener.

-config properties_file Specifies the name of the wire listener configuration file to run. This
argument is required to start or stop the wire listener.

-start Starts the wire listener. You must also specify the configuration file.

-stop Stops the wire listener. You must also specify the configuration file. The
stop command is similar to the MongoDB shutdown command.

-logfile log_file Specifies the name of the log file that is used. If this option is not
specified, the log messages are sent to std.out.

Important: If you have customized the Logback configuration or
specified another logging framework, the settings for -loglevel and
-logfile are ignored.

-loglevel Specifies the logging level.

error

Errors are sent to the log file. This is the default value.

SinoDB | Wire listener | 42

Argument Purpose

warn

Errors and warnings are sent to the log file.

info

Informational messages, warnings, and errors are sent to the log file.

debug

Debug, informational messages, warnings, and errors are sent to the log
file.

trace

Trace, debug, informational messages, warnings, and errors are sent to
the log file.

Important: If you have customized the Logback configuration or
specified another logging framework, the settings for -loglevel and
-logfile are ignored.

-port port_number Specifies the port number. If a port is specified on the command line, it
overrides the port properties set in the wire listener configuration file.
The default port is 27017.

-wait wait_time Specifies the amount of time, in seconds, to wait for any active sessions
to complete before the wire listener is stopped. The default is 10 seconds.
To force an immediate shutdown, set the wait_time to 0 seconds.

-version Prints the wire listener version.

-buildInformation Prints the wire listener build information.

Examples

In this example, the wire listener is started and the log is specified as
$INFORMIXDIR/jsonListener.log:

java -cp $INFORMIXDIR/bin/jsonListener.jar
 com.ibm.nosql.informix.server.ListenerCLI
-config $INFORMIXDIR/etc/jsonListener.properties
-logfile $INFORMIXDIR/jsonListener.log -start

In this example, the wire listener is started with the log level set to debug:

java -cp $INFORMIXDIR/bin/jsonListener.jar
 com.ibm.nosql.informix.server.ListenerCLI
-config $INFORMIXDIR/etc/jsonListener.properties
–loglevel debug -start

In this example, port 6388 is specified:

java –cp $INFORMIXDIR/bin/jsonListener.jar
 com.ibm.nosql.informix.server.ListenerCLI
-config $INFORMIXDIR/etc/jsonListener.properties
–port 6388 -start

In this example, the wire listener is paused 10 seconds before the wire listener
is stopped:

java –cp $INFORMIXDIR/bin/jsonListener.jar
 com.ibm.nosql.informix.server.ListenerCLI

SinoDB | Wire listener | 43

-config $INFORMIXDIR/etc/jsonListener.properties
–wait 10 -stop

In this example, the wire listener version is printed:

java –cp $INFORMIXDIR/bin/jsonListener.jar
 com.ibm.nosql.informix.server.ListenerCLI
–version

In this example, the wire listener build information is printed:

java –cp $INFORMIXDIR/bin/jsonListener.jar
 com.ibm.nosql.informix.server.ListenerCLI
–buildInformation

Related Links

Wire listener logging on page 45

Starting the wire listener
You can start the wire listener for the MongoDB API, the REST API, or the MQTT protocol, by
using the start command.

• Stop all wire listeners that are currently running. If you create a server instance during
the installation process, the MongoDB API wire listener is started automatically and
connected to the MongoDB API.

• If you plan to customize the Logback logger or another custom Simple Logging Facade for
Java (SLF4J) logger, you must configure the logger before starting the wire listener.

• Configuring the wire listener for the first time on page 17
• Software dependencies for JSON compatibility on page 13

To start the wire listener, run the wire listener command with the -start option.
For example:

java -cp $INFORMIXDIR/bin/jsonListener.jar
 com.ibm.nosql.server.ListenerCLI
-config $INFORMIXDIR/etc/jsonListener.properties -start

The listener.type property in the configuration file that you specify defines whether to
start the wire listener for the MongoDB API, the REST API, or the MQTT protocol.

The wire listener starts.

Examples

In the following example, the wire listener is started with the configuration
file specified as jsonListener_mongo.properties, the log file specified as
jsonListener_mongo.log, and the log level specified as info:

java -cp $INFORMIXDIR/bin/jsonListener.jar
 com.ibm.nosql.server.ListenerCLI
-config $INFORMIXDIR/etc/jsonListener_mongo.properties
-logfile $INFORMIXDIR/jsonListener_mongo.log
-loglevel info -start

Here is the output from starting the wire listener:

starting mongo listener on port 27017

SinoDB | Wire listener | 44

In the following example, the wire listener is started with the configuration
file specified as jsonListener_rest.properties:

java -cp $INFORMIXDIR/bin/jsonListener.jar
 com.ibm.nosql.server.ListenerCLI
-config $INFORMIXDIR/etc/jsonListener_rest.properties -start

Here is the output from starting the REST API wire listener:

starting rest listener on port 27017

Related Links

start json listener argument: Start the API wire listener
Wire listener logging on page 45
Running multiple wire listeners on page 44
REST API on page 92

Running multiple wire listeners
You can run multiple wire listeners.

By running multiple wire listeners, you can use a combination of the APIs that are supported
by the wire listener: MongoDB, REST, and MQTT. Create a configuration file for each listener
type that you want to run. For example, you can create a configuration file for the MongoDB
API and a configuration file for the REST API or the MQTT protocol. You can start all wire
listeners with the same start command by providing multiple -config arguments.

1. Create the individual configuration files in the $INFORMIXDIR/etc directory. You can use
the $INFORMIXDIR/etc/jsonListener-example.properties file as a template.

2. Customize each configuration file and assign a unique name.

Important: The url parameter must be specified, either in each individual
configuration file or in the file that is referenced by the include parameter.

a) Specify the include parameter to reference an additional configuration file. The path
can be relative or absolute. If you have multiple configuration files, you can avoid
duplicating parameter settings in the multiple configuration files by specifying a subset
of shared parameters in a single configuration file, and the unique parameters in the
individual configuration files.

3. Start the wire listeners.

Example: Running multiple wire listeners that share parameter settings

In this example, the same url, authentication.enable, and
security.sql.passthrough parameters are used to run two wire listeners:

1. Create a configuration file named shared.properties that includes the
following parameters:

url=jdbc:informix-sqli://localhost:9090/sysmaster:
INFORMIXSERVER=ol_sinodb1210;
authentication.enable=true
security.sql.passthrough=true

2. Create a configuration file for use with the MongoDB API that is named
mongo.properties, with the parameter include=shared.properties set:

include=shared.properties
listener.type=mongo

SinoDB | Wire listener | 45

listener.port=27017

3. Create a configuration file for use with the REST API that is named
rest.properties, with the parameter include=shared.properties set:

include=shared.properties
listener.type=rest
listener.port=8080

4. From the command line, run the start command. Include separate -config
arguments for each wire listener API type.

java -cp $INFORMIXDIR/bin/jsonListener.jar:pathname/
com.ibm.nosql.server.ListenerCLI
-config json.properties
-config rest.properties -start

Related Links

REST API syntax on page 92
Starting the wire listener on page 43
Wire listener command line options on page 41

Stopping the wire listener
You can stop the wire listener by using the stop command.

You must stop the wire listener before you modify any configuration settings.

From the command line, run the stop command with the configuration file specified.

For example:

java -cp $INFORMIXDIR/bin/jsonListener.jar -config
 $INFORMIXDIR/etc/jsonListener.properties -stop

Important: You must specify the -config argument to stop the wire listener from the
command line.

The wire listener is stopped.
Related Links

stop json listener: Stop the wire listener

Wire listener logging
The wire listener can output trace, debug, informational messages, warnings, and error
information to a log.

The default logging mechanism for the wire listener is Logback. Logback is pre-configured and
installed along with the JSON components. For more information on how to customize Logback,
see http://logback.qos.ch/.

If you start the MongoDB API wire listener from the command line, you can specify the amount
of detail, name, and location of your log file by using the -loglevel and -logfile command-
line arguments.

Important: If you have customized the Logback configuration or specified another
logging framework, the settings for -loglevel and -logfile are ignored.

If the MongoDB API wire listener is started automatically after you create a server instance
or if you run the SQL administration API task() or admin() function with the start json
listener argument, errors are sent to a log file:

• Unix™: The log file is in $INFORMIXDIR/jsonListener.log.

http://logback.qos.ch/

SinoDB | Wire listener | 46

• Windows™: The log file is named servername_jsonListener.log and is in your home directory.
For example, C:\Users\ifxjson\ol_informix1210_1_jsonListener.log.

Related Links

Starting the wire listener on page 43
Wire listener command line options on page 41

User authentication with the wire listener

You can authenticate users through the wire listener with the MongoDB authentication method.

You can use the following types of authentication methods with the wire listener:

MONGODB-CR challenge-response

The wire listener authenticates users with the MongoDB challenge-response authentication
method outside of the database server environment. You create users with the MongoDB API
create user commands. Clients connect to the wire listener as MongoDB users and the wire
listener authenticates the users. The wire listener connects to the database server as the
user that is specified by the url parameter in the wire listener configuration file. The
database server cannot access MongoDB user account information.

For MongoDB version 2.4, user information and privileges are stored in the system_users
collection in each database. For MongoDB version 2.6 and later, user information and
privileges are stored in the system.users collection in the admin database. If you are
upgrading your MongoDB version and you have existing users, you must upgrade your user
schema.

SCRAM-SHA-1 two-step authentication

SCRAM-SHA-1 is only available when the mongo.api.version=3.0 parameter is set in the wire
listener configuration file.

The wire listener authenticates users with the SCRAM-SHA-1 authentication method outside
of the database server environment. You create users with the MongoDB API create user
commands. User information and privileges are stored in the system.users collection in the
admin database. Clients connect to the wire listener as MongoDB users and the wire listener
authenticates the users. The wire listener connects to the database server as the user that
is specified by the url parameter in the wire listener configuration file. The database
server cannot access MongoDB user account information.

Important: You cannot use SCRAM authentication with the REST API or the MQTT
protocol.

Which types of authentication that you can use depend on the type of client and the version of
MongoDB.

MongoDB clients

Table 2: Authentication types for the MongoDB API by version

Authentication
type

MongoDB
2.4

MongoDB
2.6

MongoDB 3.0 Details

MONGODB-CR Yes Yes No Follow the instructions for configuring
MongoDB authentication.

SCRAM-SHA-1 No No Yes The user schema must be at MongoDB version
2.6 or later.

SinoDB | Wire listener | 47

REST API clients

Important: You cannot set the mongo.api.version parameter to 3.0 in the wire listener
configuration file because the REST API does not support SCRAM authentication.

Table 3: Authentication types for the REST API by supported MongoDB versions

Authentication
type

MongoDB
2.4

MongoDB
2.6

MongoDB 3.0 Details

MONGODB-CR Yes Yes No Follow the instructions for configuring
MongoDB authentication. HTTP clients
authenticate using the HTTP basic
authentication method.

SCRAM-SHA-1 No No No SCRAM is not supported.

MQTT clients

Important: You cannot set the mongo.api.version parameter to 3.0 in the wire listener
configuration file because the MQTT protocol does not support SCRAM authentication.

Table 4: Authentication types for the MQTT protocol by supported MongoDB versions

Authentication
type

MongoDB
2.4

MongoDB
2.6

MongoDB 3.0 Details

MONGODB-CR Yes Yes Yes Follow the instructions for configuring
MongoDB authentication. The MQTT CONNECT
packet must include the database name as a
prefix of the user name, in the following
format: "database_name.user_name".

SCRAM-SHA-1 No No No SCRAM is not supported.

Configuring MongoDB authentication
You can configure the wire listener to use MongoDB authentication.

If you are upgrading your MongoDB version and you have existing MongoDB users, you must
upgrade your user schema.

To configure MongoDB authentication:

1. Set the following parameters in the wire listener configuration file:

• Enable authentication: Set authentication.enable=true.

• Specify MongoDB authentication: Set db.authentication=mongodb-cr.

• Specify the MongoDB connection pool: Set database.connection.strategy=mongodb-cr.

• Set the MongoDB version: Set mongo.api.version to the version that you want.

• Optional. Specify the authentication timeout period: Set the
listener.authentication.timeout parameter to the number of milliseconds for
authentication timeout.

2. Restart the wire listener.

3. If necessary, upgrade your user schema by running the authSchemaUpgrade command in the
admin database.
For example:

use admin
db.runCommand({authSchemUpgrade : 1})

SinoDB | Wire listener | 48

The authSchemaUpgrade command upgrades the user schema to the MongoDB version that is
specified by the mongo.api.version parameter.

Related Links

Starting the wire listener on page 43
Stopping the wire listener on page 45
The wire listener configuration file on page 19

Adding users

To add authorized users:

1. Start the wire listener with authentication turned off: Set authentication.enable=false in
the wire listener configuration file.

2. Add users:

• For MongoDB version 2.4, run the addUser command for each user in each database.

• For MongoDB version 2.6 and 3.0, run the createUser command for each user.

3. Turn on authentication: Set authentication.enable=true in the wire listener configuration
file.

4. Restart the wire listener.

Encryption for wire listener communications

You can use Secure Sockets Layer (SSL) protocol to encrypt communication for the wire
listener.

You can encrypt wire listener communications in one or both of the following ways:

• Configure SSL connections between the wire listener and the database server.

• Configure SSL connections between the wire listener and all client applications.

If you configure SSL communication for both the database server and client applications, you
can use the same or different keystore files on the wire listener for each type of connection.

Related Links

Secure sockets layer protocol

Configuring SSL connections between the wire listener and the database server
You can encrypt the connections between the wire listener and the database server with the
Secure Sockets Layer (SSL) protocol.

You must have SSL configured for the database server. See Configuring a server instance for secure
sockets layer connections.

The wire listener must use the same public key certificate file as the database server.

To configure SSL connections between the wire listener and the database server:

1. Use the keytool utility that comes with your Java runtime environment to import a client-
side keystore database and add the public key certificate to the keystore:

C:\work>keytool -importcert -file server_keystore_file -
keystore client_keystore_name

The server_keystore_file is the name of the server key certificate file.
2. Edit the wire listener properties file to update the url property to use the SSL port that

you configured for the database server and add the SSLCONNECTION=true property to the end
of the URL.

SinoDB | Wire listener | 49

3. Start the listener with the javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword
system properties set:

java -Djavax.net.ssl.trustStore="client_keystore_path"
-Djavax.net.ssl.trustStorePassword="password" -jar jsonListener.jar
-config jsonListener.properties -logfile jsonListener.log -start

The client_keystore_path is the full path and file name of the client keystore file. The
password is the keystore password.

Configuring SSL connections between the wire listener and client applications
You can encrypt the connections between the wire listener and the client applications with the
Secure Sockets Layer (SSL) protocol.

All client applications must use the same public key certificate file as the wire listener.

To configure SSL connections between the wire listener and client applications:

1. Create a keystore and certificate for the wire listener.

Use the method that best fits your type of client application and programming language. For
example, you can use OpenSSL, or the Java keytool tool.

2. Edit the wire listener properties file to configure the wire listener SSL properties and
restart the listener.

Set the following SSL properties:

• Set the listener.ssl.enable parameter to true to enable SSL.

• Set the listener.ssl.keyStore.file parameter to the path of the keystore file.

• Set the listener.ssl.keyStore.password parameter to the password to unlock the keystore
file.

• Set the listener.ssl.key.alias parameter to the alias or identifier of the keystore
entry. If the keystore contains only one entry, this parameter does not need to be set.

• Set the listener.ssl.key.password parameter to the password to unlock the
entry from the keystore. If this parameter is not set, the listener uses the
listener.ssl.keyStore.password parameter.

• Set listener.ssl.keyStore.type parameter if the keystore is not of type JKS (Java
keystore).

3. Configure client applications to connect to the listener over SSL.

Queries through the wire listener

You can use MongoDB API commands through the wire listener to query collections and relational
tables, run SQL commands, and run queries that join collections and relational tables.

Running SQL commands by using the MongoDB API
You can run SQL statements by using the MongoDB API and retrieve results back. The results of
the SQL statements are treated like they are documents in a JSON collection.

You must enable SQL operations by setting security.sql.passthrough=true in the wire listener
properties file.

From the MongoDB shell command, use the abstract system collection system.sql as the
collection name and $sql as the query operator, followed by the SQL statement.

For example:

> db.getCollection("system.sql").find({ "$sql": "sql_statement" })

SinoDB | Wire listener | 50

To use host variables, include question marks in the SQL statement, and include the
$bindings operator with an array that contains a value for each host variable in order of
appearance. For example:

> db.getCollection("system.sql").find({ "$sql": "sql_statement",
"$bindings": [values]})

Examples

Create an SQL table

In this example, an SQL table is created by running the SinoDB® CREATE TABLE command
by using the MongoDB API:

> db.getCollection("system.sql").find({ "$sql": "create table foo
(c1 int)" })

Drop an SQL table

In this example, an SQL table is dropped by running the SinoDB® DROP TABLE command
by using the MongoDB API:

> db.getCollection("system.sql").find({"$sql": "drop table foo" })

Delete SQL customer call records that are more than 5 years old

In this example, customer call records stored in SQL tables are deleted by running
the SinoDB® DELETE command by using the MongoDB API:

> db.getCollection("system.sql").findOne({ "$sql": "delete from
cust_calls where (call_dtime + interval(5) year to year) < current" })

Result: 7 rows were deleted.

{ "n" : 7 }

Join JSON collections

In this example, a query counts the number of orders customers placed by using an
outer join to include the customers who did not place orders.

> db.getCollection("system.sql").find({ "$sql": "select
 c.customer_num,o.customer_num as order_cust,count(order_num) as
 order_count from customer c left outer join orders o on
 c.customer_num = o.customer_num group by 1, 2 order by 2" })

Result:

{ "customer_num" : 113, "order_cust" : null, "order_count" : 0 }
{ "customer_num" : 114, "order_cust" : null, "order_count" : 0 }
{ "customer_num" : 101, "order_cust" : 101, "order_count" : 1 }
{ "customer_num" : 104, "order_cust" : 104, "order_count" : 4 }
{ "customer_num" : 106, "order_cust" : 106, "order_count" : 2 }

Delete rows based on a host variable

In this example, the statement includes a host variable that specifies to delete the
rows that have the name "john".

> db.getCollection("system.sql").find({"$sql": "delete from mytab

SinoDB | Wire listener | 51

 where name = ?", "$bindings" : ["john"] })

Run a user-defined function with host variables

In this example, the statement runs a user-defined routine with two host variables
to raise prices.

> db.getCollection("system.sql").find({"$sql": "execute function
raise_price(?, ?)", "$bindings" : [101, 0.10] })

Related Links

Configuring the wire listener for the first time on page 17
The wire listener configuration file on page 19

Running MongoDB operations on relational tables
You can run MongoDB operations on relational tables by using the MongoDB API.

Use the MongoDB database methods to run read and write operations on a relational table as
if the table were a collection. The wire listener examines the database and if the accessed
entity is a relational table, it converts the basic operations on that table to SQL and
converts the returned values into a JSON document. At the first access to an entity, the wire
listener caches the name and type of that entity. The first access results in an extra call to
the SinoDB® server, but subsequent operations do not.

From the MongoDB API, enter the relational table name as the collection name in the MongoDB
collection method.

For example:

>db.getCollection("tablename");

Examples

The following examples use the customer table in the stores_demo sample
database. All of the tables in the stores_demo database are relational tables,
but you can use the same MongoDB collection methods to access and modify the
tables, as if they were collections.

Get the customer count

In this example, the number of customers is returned.

> db.customer.count()
28

Query for a particular customer

In this example, a specific customer record is retrieved.

> db.customer.find({customer_num:101})
{ "customer_num" : 101, "fname" : "Ludwig", "lname" : "Pauli", "company" :
 "All Sports Supplies", "address1" : "213 Erstwild Court", "address2" :
 null, "city" : "Sunnyvale", "state" : "CA", "zipcode" : "94086",
 "phone" : "408-555-8075" }

Update a customer phone number

In this example, the customer phone number is updated.

> db.customer.update({"customer_id":101}, {"$set":{"phone":"408-555-1234"}})

SinoDB | Wire listener | 52

Related Links

Collection methods on page 66

Running join queries by using the wire listener
You can use the wire listener to run join queries on JSON and relational data. The syntax
supports collection-to-collection joins, relational-to-relational joins, and collection-to-
relational joins. Join queries are supported in sharded environments when parallel sharded
queries are enabled.

Join queries in the wire listener are done by submitting a join query document to the
system.join pseudo table.

• Wire listener join queries support the sort, limit, skip, and explain options that you can
set on a MongoDB cursor.

• Fields that are specified in the sort clause must also be included in the projection
clause.

• The $hint operator is not supported.

1. Create a join query document.
The join query document has the following syntax:
{"$collections ":
{ , "table_or_collection_name" :{"$project ":{specifications } [,"$where ":{filter}] }
, "$condition": { { "tabName1.column" :"tabName2.column" | "tabName1.column" :[,
"tabName2.column"] } } }
$collections

This required SinoDB® JSON operator defines the two or more collections or relational
tables, which are separated by commas, that are included in the join.

$project

This required MongoDB JSON operator applies a projection clause to the
table_or_collection_name that is specified.

$where

This optional MongoDB JSON operator applies a query filter to the table or relational
table. You can use any of the supported query operators that are listed here: Query and
projection operators on page 84.

$condition

This required SinoDB® JSON operator defines how the specified collections or tables are
joined. You can specify a condition by mapping a single table column to another single
table column, or a single table column to multiple other table columns.

2. Run a find query against a pseudo table that is named system.join with the join query
document specified.
For example, in the MongoDB shell:

> db.system.join.find({join_query_document})

The query results are returned.

Examples of join query document syntax

This example retrieves customer orders that total more than $100. The join
query document joins the customer and orders tables, on the customer_num field
where the order total is greater than 100. The same query document works if the
customers and orders tables are collections, relational tables, or a combination
of the two.

{"$collections":

SinoDB | Wire listener | 53

 {
 "customers":
 {"$project":{customer_num:1,name:1,phone:1}},
 "orders":
 {"$project":{order_num:1,nitems:1,total:1,_id:0},
 "$where":{total:{"$gt":100}}}
 },
 "$condition":
 {"customers.customer_num":"orders.customer_num"}
}

This example retrieves the order, shipping, and payment information for order
number 1093. The array syntax is used in the $condition syntax of the join query
document.

{"$collections":
 {
 "orders":
 {"$project":{order_num: 1,nitems: 1,total: 1,_id:0},
 "$where":{order_num:1093}},
 "shipments":
 {"$project":{shipment_date:1,arrival_date:1}},
 "payments":
 {"$project":{payment_method:1,payment_date:1}}
 },
 "$condition":
 {"orders.order_num":["shipments.order_num","payments.order_num"]}
}

This example retrieves the order and customer information for orders that total
more than $1000 and that are shipped to the postal code 10112.

{"$collections":
 {
 "orders":
 {"$project":{order_num:1,nitems:1,total:1,_id:0},
 "$where":{total:{$gt:1000}}},
 "shipments":
 {"$project":{shipment_date:1,arrival_date:1,_id:0},
 "$where":{address.zipcode:10112},
 "customer":
 {"$project":{customer_num:1,name:1,company:1,_id:0}}
 },
 "$condition":
 {
 "orders.order_num":"shipments.order_num",
 "orders.customer_num":"customer.customer_num",
 }
}

High availability support in the wire listener

The wire listener provides high availability support.

To provide high availability to client applications, use the appropriate method:

• For REST clients, you can use a reverse proxy for multiple wire listeners.

• For MongoDB clients, use a high-availability cluster configuration for your SinoDB® database
servers. For each database server in the cluster, run a wire listener that is directly

SinoDB | Wire listener | 54

connected to that database server. Each wire listener must be on the same computer as the
database server that it is connected to and all wire listeners must run on the port 27017.
For more information, see http://docs.mongodb.org/meta-driver/latest/legacy/connect-driver-to-replica-set/.

To provide high availability between the wire listener and the SinoDB® database server, use one
of the following methods:

• Route the connection between the wire listener and the database server through the
Connection Manager.

• Configure the url parameter in the wire listener configuration file to use one of the
SinoDB® JDBC Driver methods of connecting to a high-availability cluster. For more
information, see Dynamically reading the SinoDB® sqlhosts file or Properties for connecting directly to an
HDR pair of servers.

Related Links

Dynamically reading the Sinoregal DS sqlhosts file

http://docs.mongodb.org/meta-driver/latest/legacy/connect-driver-to-replica-set/

Chapter

3
JSON data sharding

You can shard data with SinoDB®. Documents from a collection or rows from a table can be
sharded across a cluster of database servers, reducing the number of documents or rows and
the size of the index for the database of each server. When you shard data across database
servers, you also distribute performance across hardware. As your database grows in size, you
can scale up by adding more shard servers to your shard cluster.

Documents or rows that are inserted on a shard server are distributed to the appropriate
shard servers in a shard cluster based on the sharding schema. Queries on a sharded table
automatically retrieve data from all relevant shard servers in a shard cluster. When data
is sharded based on a field or column that specifies certain segmentation characteristics,
queries can skip shard servers that do not contain relevant data.

A shard cluster of SinoDB® database servers is a special form of Enterprise Replication. You
can create a shard cluster with Enterprise Replication commands or with MongoDB commands.

SinoDB® shard cluster architecture is very flexible:

• Shard servers can run on different hardware and operating systems.

• Shard servers can run different version of SinoDB®. For example, you can upgrade SinoDB® on
shard servers individually.

• Shard servers can have high-availability secondary servers from which users can query the
sharded table.

To start sharding data:

1. Prepare shard servers for sharding.

2. Create a shard cluster.

3. Define a schema for sharding data against an existing table.

Related Links

Configuring the wire listener for the first time on page 17
Shard cluster setup
Sharded queries

Preparing shard servers

You must prepare shard servers before you can shard data.

To set up shard servers:

1. On each shard server, set the SHARD_ID configuration parameter to a positive integer value
that is unique in the shard cluster by running the following command:

onmode -wf SHARD_ID=unique_positive_integer

If the SHARD_ID configuration parameter is already set to a positive integer, you can
change the value by editing the onconfig file and then restarting the database server. You

SinoDB | JSON data sharding | 56

can also set the SHARD_MEM configuration parameter to customize the number of memory pools
that are used during shard queries.

2. Specify trusted hosts information for all shard servers.

On each shard server, use one of the following methods to add trusted host information
about all the other shard servers:

• Use the OpenAdmin Tool (OAT) for SinoDB®. Go to the Server Administration > Configuration
page, and click the Trusted Hosts tab.

• Run the SQL administration API task() or admin() function with the cdr add trustedhost
argument and include the appropriate host values for all the other shard servers. You
must be a Database Server Administrator (DBSA) to run these functions.

3. On each shard server, edit the wire listener configuration file:

a) Set the sharding.enable parameter to true.

b) Set the sharding.query.parallel.enable parameter to true.

c) Set the update.client.strategy parameter to deleteInsert.

d) If you want to allow shard key field values to be updated, set the update.mode parameter
to client. If you do not want to allow the updating of shard key field values, you can
leave the setting of the update.mode parameter as the default value of mixed.

e) Set the USER attribute in the url parameter to a user who has the REPLICATION privilege.
If you created a database server instance during installation, the ifxjson user, who
has the REPLICATION privilege, is automatically set as the value of the USER attribute.
Otherwise, see Configuring the wire listener for the first time on page 17 for instructions.

4. On each shard server, restart the wire listener.

Related Links

cdr add trustedhost argument: Add trusted hosts (SQL administration API)
cdr list trustedhost argument: List trusted hosts (SQL administration API)
Starting the wire listener
onmode -wf, -wm: Dynamically change certain configuration parameters
SHARD_ID configuration parameter
SHARD_MEM configuration parameter

Creating a shard cluster with MongoDB commands

You create a shard cluster by adding shard servers with the The MongoDB sh.addShard shell
command or the db.runCommand command with the addShard syntax.

The shard servers must be prepared for sharding. See Preparing shard servers on page 55.

To create a shard cluster from the MongoDB shell:

1. Run the mongo command to start the MongoDB shell.

2. Run one of the following commands with the host name and port that is specified for the
SinoDB® server that you want to add. The specified port must run the SinoDB® network-based
listener, for example the onsoctcp protocol.

a) Run the sh.addShard command.

b) Run the db.runCommand with the addShard command syntax. You can include the fully
qualified domain name of the server instead of the host name. You can specify multiple
servers.

A shard cluster is created with the specified shard servers. Each shard server is set up with
Enterprise Replication and assigned an Enterprise Replication group name in its sqlhosts file.
The default Enterprise Replication group name for a database server is the database server

SinoDB | JSON data sharding | 57

name with a suffix of g_. For example, the default Enterprise Replication group name for a
database server that is named myserver is g_myserver.

Examples

Add a server to a shard cluster with addShard

The following command adds the database server that is at port 9202 of
myhost2.sinoregal.com to a shard cluster:

> sh.addShard("myhost2.sinoregal.com:9202")

Add a server to a shard cluster with db.runCommand and addShard

The following command adds the database server that is at port 9204 of
myhost4.sinoregal.com to a shard cluster.

> db.runCommand({"addShard":"myhost4.sinoregal.com:9204"})

Add multiple servers to a shard cluster

This example adds the database servers that are at port 9205 of
myhost5.sinoregal.com, port 9206 of myhost6.sinoregal.com, and port 9207 of
myhost7.sinoregal.com to a shard cluster.

> db.runCommand({"addShard":["myhost5.sinoregal.com:9205",
 "myhost6.sinoregal.com:9206","myhost7.sinoregal.com:9207"]})

Related Links

cdr define shardCollection
cdr add trustedhost argument: Add trusted hosts (SQL administration API)
cdr remove trustedhost argument: Remove trusted hosts (SQL administration API)
cdr list trustedhost argument: List trusted hosts (SQL administration API)
Database commands on page 69

Shard-cluster definitions for distributing data

A cluster of shard servers uses a definition to distribute data across shard servers.

You must create a shard-cluster definition to distribute data across the shard servers. The
definition contains the following information:

• The SinoDB® Enterprise Replication group name of each participating shard server.

• The name of the database and collection or table that is distributed across the shard
servers of a shard cluster.

• The field or column that is used as a shard key for distributing data. Shard key values
determine which shard server a document or row is stored on.

• The sharding method by which documents or rows are distributed to specific shard servers.
The sharding method is either a hash-based or expression-based.

Related Links

cdr change shardCollection
cdr delete shardCollection

SinoDB | JSON data sharding | 58

Defining a sharding schema with a hash algorithm
The shardCollection command in the MongoDB shell creates a definition for distributing data
across the database servers of a shard cluster.

To create a shard-cluster definition that uses a hash algorithm for distributing data across
database servers:

1. Run the mongo command.
The command starts the MongoDB shell.

2. Run the shardCollection command.

There are two ways to run the command:

• Run the sh.shardCollection MongoDB command. For example:

> sh.shardCollection("database1.collection1",
 {customer_name:"hashed"})

• Run the db.runCommand from the MongoDB shell, with shardCollection command syntax. For
example:

> db.runCommand({"shardCollection":"database2.collection_2",
 key:{customer_name:"hashed"}})

The shardCollection command syntax for using a hash algorithm is shown in the following
diagram:
db.runCommand
({"shardCollection":" database. { collection table } ",
key:{ { field column } :"hashed"}})

Element Description Restrictions

database The name of the database that contains the
collection that is distributed across database
servers.

The database must
exist.

collection The name of the collection that is distributed
across database servers.

The collection must
exist.

column The shard key that is used to distribute data
across the database servers of a shard cluster.

The column must
exist.

Composite shard keys
are not supported.

field The shard key that is used to distribute data
across the database servers of a shard cluster.

The field must exist.

Composite shard keys
are not supported.

table The name of the table that is distributed
across database servers.

The table must exist.

3. For optimal query performance, connect to the wire listener and run the MongoDB ensureIndex
command on the shard key of each of a cluster's shard servers. The ensureIndex command
ensures that an index for the collection or table is created on the shard server.

The name of a shard-cluster definition that is created by a shardCollection command that is
run through the wire listener is:
sh_database_ { collection table }

SinoDB | JSON data sharding | 59

Example

The following command defines a shard cluster that uses a hash algorithm on the
shard key value year to distribute data across multiple database servers.

> sh.shardCollection("mydatabase.mytable",{year:"hashed"})

The name of the created shard-cluster definition is sh_mydatabase_mytable.

Related Links

cdr change shardCollection
cdr delete shardCollection
Database commands on page 69

Defining a sharding schema with an expression
The MongoDB shell db.runCommand command with shardCollection command syntax creates a
definition for distributing data across the database servers of a shard cluster.

To create a shard-cluster definition that uses an expression for distributing data across
database servers:

1. Run the mongo command.
The command starts the MongoDB shell.

2. Run the db.runCommand from the MongoDB shell, with shardCollection command syntax.

The shardCollection command syntax for using an expression is shown in the following
diagram:
db.runCommand
({"shardCollection":" database. { collection table } ",
key:{ { column field } :1},expressions :{
, "ER_group_name":expression "
"ER_group_name ":"remainder"
})

Element Description Restrictions

collection The name of the collection that is
distributed across database servers.

The collection must
exist.

column The shard key that is used to distribute
data across the database servers of a shard
cluster.

The column must exist.

Composite shard keys
are not supported.

database The name of the database that contains
the collection that is distributed across
database servers.

The database must
exist.

ER_group_name The Enterprise Replication group name of a
database server that receives copied data.

The default Enterprise Replication group
name for a database server is the database
server's name prepended with g_. For
example, the default Enterprise Replication
group name for a database server that is
named myserver is g_myserver.

None.

SinoDB | JSON data sharding | 60

Element Description Restrictions

expression The expression that is used to select
documents by shard key value.

None.

field The shard key that is used to distribute
data across the database servers of a shard
cluster.

The field must exist.

Composite shard keys
are not supported.

remainder Specifies a database server that receives
documents with shard key values that are
not selected by expressions. The remainder
expression is required.

table The name of the table that is distributed
across database servers.

The table must exist.

3. For optimal query performance, connect to the wire listener and run the MongoDB ensureIndex
command on the shard key of each of a cluster's shard servers. The ensureIndex command
ensures that an index is created for the collection or table on the shard server.

The name of a shard-cluster definition that is created by a shardCollection command that is
run through the wire listener is:
sh_database_ { collection table }

Examples

Define a shard cluster that uses an expression to distribute data across multiple
database servers

The following command defines a shard cluster that uses an expression on the field
value state for distributing collection1 across multiple database servers.

> db.runCommand({"shardCollection":"database1.collection1",
 key:{state:1},expressions:{"g_shard_server_1":"in ('KS','MO')",
 "g_shard_server_2":"in ('CA','WA')","g_shard_server_3":"remainder"}})

The name of the created shard-cluster definition is sh_database1_collection1.

• Inserted documents with KS and MO values in the state field are sent to
g_shard_server_1.

• Inserted documents with CA and WA values in the state field are sent to
g_shard_server_2.

• All inserted documents that do not have KS, MO, CA, or WA values in the state
field are sent to g_shard_server_3.

Define a shard cluster that uses an expression to distribute data across multiple
database servers

The following command defines a shard cluster that uses an expression on the column
value animal for distributing table2 across multiple database servers.

> db.runCommand({"shardCollection":"database1.table2",
 key:{animal:1},expressions:{"g_shard_server_1":"in ('dog','coyote')",
 "g_shard_server_2":"in ('cat')","g_shard_server_3":"in ('rat')",
 "g_shard_server_4":"remainder"}})

The name of the created shard-cluster definition is sh_database2_table2.

• Inserted rows with dog or coyote values in the animal column are sent to
g_shard_server_1.

• Inserted rows with cat values in the animal column are sent to g_shard_server_2.

SinoDB | JSON data sharding | 61

• Inserted rows with rat data values in the animal column are sent to
g_shard_server_3.

• All inserted rows that do not have dog, coyote, cat, or rat values in the animal
column are sent to g_shard_server_4.

Define a shard cluster that uses an expression to distribute collections across
multiple database servers

The following command defines a shard cluster that uses an expression on the field
value year for distributing collection3 across multiple database servers.

> db.runCommand({"shardCollection":"database1.collection3",
 key:{year:1},expressions:{"g_shard_server_1":"between 1980 and 1989",
 "g_shard_server_2":"between 1990 and 1999",
 "g_shard_server_3":"between 2000 and 2009",
 "g_shard_server_4":"remainder"}})

The name of the created shard-cluster definition is sh_database3_collection3.

• Inserted documents with values of 1980 to 1989 in the year field are sent to
g_shard_server_1.

• Inserted documents with values of 1990 to 1999 in the year field are sent to
g_shard_server_2.

• Inserted documents with values of 1980 to 1989 in the year field are sent to
g_shard_server_3.

• Inserted documents with values below 1980 or above 2009 in the year field are
sent to g_shard_server_4.

Related Links

Database commands on page 69

Shard cluster management

You can display information about shard cluster participants and about the shard cache on each
shard server. You can add or remove shard servers from a shard cluster.

To display information about shard cluster participants, run the db.runCommand from the
MongoDB shell, with listShard command syntax.

To display information about shard caches, run the onstat -g shard command.

Add a shard server

To add a shard server to the shard cluster, prepare the new shard server and add it to the
shard cluster with the addShard command. Make sure to add the trusted host information for the
new shard server to the existing shard servers.

Remove a shard server

To remove a shard server, run the db.runCommand from the MongoDB shell, with removeShard
command syntax.

Change the sharding definition

After you add or remove a shard server, you might need to update the sharding definition:

• A definition that uses a hash algorithm to shard data is modified automatically.

• You must modify a sharding definition that uses an expression by running the
changeShardCollection command.

SinoDB | JSON data sharding | 62

When you change the sharding definition, existing data on shard servers is redistributed to
match the new definition.

Related Links

Preparing shard servers on page 55
Creating a shard cluster with MongoDB commands on page 56
cdr list trustedhost argument: List trusted hosts (SQL administration API)
onstat -g shard command: Print information about the shard cache

Changing the definition for a shard cluster
The db.runCommand command with changeShardCollection command syntax changes the definition for
a shard cluster.

If the shard cluster uses an expression for distributing data across multiple database
servers, you must add database servers to a shard cluster and remove database servers from a
shard cluster by running the changeShardCollection command. If the shard-cluster definition
uses a hash algorithm, database servers are automatically added to the shard cluster when you
run the sh.addShard MongoDB shell command.

If you change a shard-cluster definition to include a new shard server, that server must first
be added to a shard cluster by running the db.runCommand command with addShard command syntax.

When a shard-cluster definition changes, existing data on shard servers is redistributed to
match the new definition.

The following steps apply to changing the definition for shard cluster that uses an expression
for distributing documents in a collection across multiple database servers.

To change the definition for a shard cluster:

1. Run the mongo command.
The command starts the MongoDB shell.

2. Change the shard-cluster definition by running the changeShardCollection command. You must
redefine all expressions for all shard servers, not just newly added or changed shard
servers.

db.runCommand
({"changeShardCollection":" database. { collection table } ",
expressions:{ , "ER_group_name":" expression"
,"ER_group_name":" remainder"
})

Element Description Restrictions

collection The name of the collection that is distributed across
database servers.

The collection
must exist.

database The name of the database that contains the collection
that is distributed across database servers.

The database must
exist.

ER_group_name The Enterprise Replication group name of a database
server that receives copied data.

The default Enterprise Replication group name
for a database server is the database server's
name prepended with g_. For example, the default
Enterprise Replication group name for a database
server that is named myserver is g_myserver.

None.

expression The expression that is used to select documents by
shard key value.

None.

SinoDB | JSON data sharding | 63

Element Description Restrictions

remainder The database server that receives documents
with shard key values that are not selected by
expressions.

table The name of the table that is distributed across
database servers.

The table must
exist.

3. For optimal query performance, connect to the wire listener and run the MongoDB ensureIndex
command on the shard key each of a cluster's shard servers. The ensureIndex command ensures
that an index for the collection or table is created on the shard server.

Example

You have a shard cluster that is composed of three database servers, and the
shard cluster is defined by the following command:

> db.runCommand({"shardCollection":"database1.collection1",
 expressions:{"g_shard_server_1":"in ('KS','MO')",
 "g_shard_server_2":"in ('CA','WA')","g_shard_server_3":"remainder"})

To add g_shard_server_4 and g_shard_server_5 to the shard cluster and change
where data is sent to, run the following command:

> db.runCommand({"changeShardCollection":"database1.collection1",
 expressions:{"g_shard_server_1":"in ('KS','MO')",
 "g_shard_server_2":"in ('TX','OK')","g_shard_server_3":"in ('CA','WA')",
 "g_shard_server_4":"in ('OR','ID')","g_shard_server_5":"remainder"})

The new shard cluster contains five database servers:

• Inserted documents with a state field value of KS or MO are sent to
g_shard_server_1.

• Inserted documents with a state field value of TX or OK are sent to
g_shard_server_2.

• Inserted documents with a state field value of CA or WA are sent to
g_shard_server_3.

• Inserted documents with a state field value of OR or ID are sent to
g_shard_server_4.

• Inserted documents with a state field value that is not in the expression are
sent to g_shard_server_5.

To then remove g_shard_server_2 and change where the data that was on
g_shard_server_2 is sent to, run the following command:

> db.runCommand({"changeShardCollection":"database1.collection1",
 expressions:{"g_shard_server_1":"in ('KS','MO')",
 "g_shard_server_3":"in ('TX','CA','WA')",
 "g_shard_server_4":"in ('OK','OR','ID')",
 "g_shard_server_5":"remainder"})

The new shard cluster contains four database servers.

• Inserted documents with a state field value of TX are now sent to
g_shard_server_3.

• Inserted documents with a state field value of OK are now sent to
g_shard_server_4.

SinoDB | JSON data sharding | 64

Existing data on shard servers is redistributed to match the new definition.

Viewing shard-cluster participants
Run the db.runCommand MongoDB shell command with listShards syntax to list the Enterprise
Replication group names, hosts, and port numbers of all shard servers in a shard cluster.

1. Run the mongo command.
The command starts the MongoDB shell.

2. Run the listShards command:

db.runCommand({listShards:1})

The listShards command produces output in the following structure:

{
 "serverUsed" : "server_host/IP_address",
 "shards" : [
 {
 "_id" : "ER_group_name_1",
 "host" : "host_1:port_1"
 },
 {
 "_id" : "ER_group_name_2",
 "host" : "host_2:port_2"
 },
 {
 "_id" : "ER_group_name_x",
 "host" : "host_x:port_x"
 }
],
 "ok" : 1
}

ER_group_name
The Enterprise Replication group name of a shard server.

host
The host for a shard-cluster participant. The host can be a localhost name or a full domain
name.

IP_address
The IP address of the database server that the listener is connected to.

port
The port number that a shard-cluster participant uses to communicate with other shard-
cluster participants.

server_host
The host for the database server that the listener is connected to. The host can be a
localhost name or a full domain name.

Example

For this example, you have a shard cluster defined by the following command:

prompt> db.runCommand({"addShard":["myhost1.ibm.com:9201",
 "myhost2.ibm.com:9202","myhost3.ibm.com:9203",
 "myhost4.ibm.com:9204","myhost5.ibm.com:9205"]})

SinoDB | JSON data sharding | 65

The following example output is shown when the listShards command is run in
the MongoDB shell, and the listener is connected to the database server at
myhost1.ibm.com.

{
 "serverUsed" : "myhost1.ibm.com/192.0.2.0:9200",
 "shards" : [
 {
 "_id" : "g_myserver1",
 "host" : "myhost1.ibm.com:9200"
 },
 {
 "_id" : "g_myserver2",
 "host" : "myhost2.ibm.com:9202"
 },
 {
 "_id" : "g_myserver3",
 "host" : "myhost3.ibm.com:9203"
 }
 {
 "_id" : "g_myserver4",
 "host" : "myhost4.ibm.com:9204"
 }
 {
 "_id" : "g_myserver5",
 "host" : "myhost5.ibm.com:9205"
 }
],
 "ok" : 1
}

Figure 1: listShards command output for a shard cluster

Related Links

cdr list trustedhost argument: List trusted hosts (SQL administration API)
cdr list shardCollection
onstat -g shard command: Print information about the shard cache
Database commands on page 69

SinoDB | MongoDB API and commands | 66

Chapter

4
MongoDB API and commands

The SinoDB® support for MongoDB application programming interfaces and commands are described
here.

Language drivers

The wire listener parses messages that are based on the MongoDB Wire Protocol.

You can use the MongoDB community drivers to store, update, and query JSON documents with
SinoDB® as a JSON data store. These drivers can include Java™, C/C++, Ruby, PHP, PyMongo, and
so on.

Download the MongoDB drivers for the programming languages at http://docs.mongodb.org/ecosystem/
drivers/.

Command utilities and tools

You can use the MongoDB shell and any of the standard MongoDB command utilities and tools.

The supported MongoDB shell is version 2.4, 2.6, 3.0, and 3.2.

You can run the MongoDB mongodump and mongoexport utilities against MongoDB to export data
from MongoDB to SinoDB®.

You can run the MongoDB mongorestore and mongoimport utilities against SinoDB® to import data
from MongoDB to SinoDB®.

Collection methods

SinoDB® supports a subset of the MongoDB collection methods.

The collection methods are run on a JSON collection or a relational table. The syntax for
collection methods in the mongo shell is db.collection_name.collection_method(),
where db refers to the current database, collection_name is the name of the JSON collection
or relational table, collection_method is the MongoDB collection method. For example,
db.cartype.count() determines the number of documents that are contained in the cartype
collection.

Table 5: Supported collection methods

Collection method JSON
collections

Relational
tables

Details

aggregate No No

count Yes Yes

http://docs.mongodb.org/ecosystem/drivers/
http://docs.mongodb.org/ecosystem/drivers/

SinoDB | MongoDB API and commands | 67

Collection method JSON
collections

Relational
tables

Details

createIndex Yes Yes For more information, see Index creation on page 68.

dataSize Yes No

distinct Yes Yes

drop Yes Yes

dropIndex Yes Yes

dropIndexes Yes No

ensureIndex Yes Yes For more information, see Index creation on page 68.

find Yes Yes

findAndModify Yes Yes For relational tables, findAndModify is supported only for
tables that have a primary key. This method is not support
sharded data.

findOne Yes Yes

getIndexes Yes No

getShardDistributionNo No

getShardVersion No No

getIndexStats No No

group No No

indexStats No No

insert Yes Yes

isCapped Yes Yes This command returns false because capped collections are
not supported in SinoDB®.

mapReduce No No

reIndex No No

remove Yes Yes The justOne option is not supported. This command deletes
all documents that match the query criteria.

renameCollection No No

save Yes No

stats Yes No

storageSize Yes No

totalSize Yes No

update Yes Yes The multi option is supported for JSON collections if
update.one.enable=true in the wire listener properties
file. For relational tables, the multi-parameter is ignored
and all documents that meet the query criteria are updated.
If update.one.enable=false, all documents that match the
query criteria are updated.

SinoDB | MongoDB API and commands | 68

Collection method JSON
collections

Relational
tables

Details

validate No No

For more information about the MongoDB features, see http://docs.mongodb.org/manual/reference/.

Related Links

The wire listener configuration file on page 19
Running MongoDB operations on relational tables on page 51

Index creation

SinoDB® supports the creation of indexes on collections and relational tables by using the
MongoDB API and the wire listener.

• Index creation by using the MongoDB syntax on page 68
• Index creation for a specific data type by using the SinoDB extended syntax on page 68
• Index creation for text, geospatial, and hashed on page 69

Index creation by using the MongoDB syntax

For JSON collections and relational tables, you can use the MongoDB createIndex and
ensureIndex syntax to create an index that works for all data types. For example:

db.collection.createIndex({ zipcode: 1 })
db.collection.createIndex({ state: 1, zipcode: -1})

Tip: If you are creating an index for a JSON collection on a field that has a fixed
data type, you can get the best query performance by using the SinoDB® extended syntax.

The following options are supported:

• name

• unique

The following options are not supported:

• background

• default_language

• dropDups

• expireAfterSeconds

• language_override

• sparse

• v

• weights

Index creation for a specific data type by using the SinoDB® extended syntax
You can use the SinoDB® createIndex or ensureIndex syntax on collections to create an index for
a specific data type. For example:

db.collection.createIndex({ zipcode : [1, "$int"] })
db.collection.createIndex({ state: [1, "$string"], zipcode: [-1, "$int"] })

This syntax is supported for collections only. It not supported for relational tables.

http://docs.mongodb.org/manual/reference/

SinoDB | MongoDB API and commands | 69

Tip: If you are creating an index on a field that has a fixed data type, you can get
better query performance by using the SinoDB® createIndex or ensureIndex syntax.

The following data types are supported:

• $binary

• $boolean

• $date

• $double2 on page 69

• $int3 on page 69

• $integer3 on page 69

• $lvarchar1 on page 69

• $number2 on page 69

• $string1 on page 69

• $timestamp

• $varchar

Notes:

1. $string and $lvarchar are aliases and create lvarchar indexes.

2. $number and $double are aliases and create double indexes.

3. $int and $integer are aliases.

Index creation for text, geospatial, and hashed

Text indexes

Text indexes are supported. You can search string content by using text search in documents
of a collection.

You can create text indexes by using the MongoDB or SinoDB® syntax. For example, here is
the MongoDB syntax:

db.articles.ensureIndex({ abstract: "text" })

The SinoDB® syntax provides additional support for the SinoDB® basic text search
functionality. For more information, see createTextIndex on page 77.

Geospatial indexes

2dsphere indexes are supported by using the GeoJSON objects, but not the MongoDB legacy
coordinate pairs.

2d indexes are not supported.

Hashed indexes

Hashed indexes are not supported. If a hashed index is specified, a regular untyped index
is created.

For more information about the MongoDB features, see http://docs.mongodb.org/manual/reference/.

Database commands

SinoDB® supports a subset of the MongoDB database commands.

The basic syntax for database commands in the mongo shell is db.command(), where db refers to
the current database, and command is the database command. You can use the mongo shell helper
method db.runCommand() to run database commands on the current database.

• User commands on page 70

http://docs.mongodb.org/manual/reference/

SinoDB | MongoDB API and commands | 70

• Database operations on page 71

User commands

Aggregation commands

Table 6: Aggregation commands

MongoDB command JSON
collections

Relational
tables

Details

aggregate Yes Yes The wire listener supports version 2.4 of the MongoDB
aggregate command, which returns a command result.
For more information, see Aggregation framework
operators on page 89.

count Yes Yes

distinct Yes Yes

group No No

mapReduce No No

Geospatial commands

Table 7: Geospatial commands

MongoDB command JSON
collections

Relational
tables

Details

geoNear Yes No Supported by using the GeoJSON format. The MongoDB
legacy coordinate pairs are not supported.

geoSearch No No

geoWalk No No

Query and write operation commands

Table 8: Query and write operation commands

MongoDB command JSON
collections

Relational
tables

Details

delete Yes Yes

eval No No

findAndModify Yes Yes For relational tables, the findAndModify command
is supported only for tables that have a primary
key. This command does not support sharded data.

getLastError Yes Yes

getPrevError No No

insert Yes Yes

resetError No No

SinoDB | MongoDB API and commands | 71

MongoDB command JSON
collections

Relational
tables

Details

text No No Text queries are supported by using the $text or
$ifxtext query operators, not through the text
command.

update Yes Yes

Database operations

Authentication commands

Table 9: Authentication commands

Name Supported Details

authenticate Yes

authSchemaUpgrade Yes This command upgrades user data to MongoDB API version
2.6 or higher.

logout Yes

getnonce Yes

User management commands

Table 10: User management commands

Name Supported Details

createUser Yes Supported for MongoDB API version 2.6 or higher.

dropAllUsersFromDatabase Yes Supported for MongoDB API version 2.6 or higher.

dropUser Yes Supported for MongoDB API version 2.6 or higher.

grantRolesToUser Yes Supported for MongoDB API version 2.6 or higher.

revokeRolesFromUser Yes Supported for MongoDB API version 2.6 or higher.

updateUser Yes Supported for MongoDB API version 2.6 or higher.

usersInfo Yes Supported for MongoDB API version 2.6 or higher.

Role management commands

Table 11: Role management commands

Name Supported Details

createRole Yes Supported for MongoDB API version 2.6 or higher.

dropAllRolesFromDatabase Yes Supported for MongoDB API version 2.6 or higher.

dropRole Yes Supported for MongoDB API version 2.6 or higher.

grantPrivilegesToRole Yes Supported for MongoDB API version 2.6 or higher.

grantRolesToRole Yes Supported for MongoDB API version 2.6 or higher.

invalidateUserCache No

SinoDB | MongoDB API and commands | 72

Name Supported Details

rolesInfo Yes Supported for MongoDB API version 2.6 or higher.

revokePrivilegesFromRole Yes Supported for MongoDB API version 2.6 or higher.

revokeRolesFromRole Yes Supported for MongoDB API version 2.6 or higher.

updateRole Yes Supported for MongoDB API version 2.6 or higher.

Diagnostic commands

Table 12: Diagnostic commands

Name Supported Details

buildInfo Yes Whenever possible, the SinoDB® output fields are identical to
MongoDB. There are additional fields that are unique to SinoDB®.

collStats Yes The value of any field that is based on the collection size is
an estimate, not an exact value. For example, the value of the
field 'size' is an estimate.

connPoolStats No

cursorInfo No

dbStats Yes The value of any field that is based on the collection size is
an estimate, not an exact value. For example, the value of the
field 'dataSize' is an estimate.

features Yes

getCmdLineOpts Yes

getLog No

hostInfo Yes The memSizeMB, totalMemory, and freeMemory fields indicate the
amount of memory that is available to the Java™ virtual machine
(JVM) that is running, not the operating system values.

indexStats No

listCommands Yes

listDatabases Yes The value of any field that is based on the collection size is
an estimate, not an exact value. For example, the value of the
field 'sizeOnDisk' is an estimate.

The listDatabases command estimates the size of all collections
and collection indexes for each database. However, relational
tables and indexes are excluded from this size calculation.

Important: The listDatabases command performs expensive
and CPU-intensive computations on the size of each
database in the SinoDB® instance. You can decrease the
expense by using the sizeStrategy option.

SinoDB | MongoDB API and commands | 73

Name Supported Details

sizeStrategy

You can use this option to configure the strategy for
calculating database size when the listDatabases command is
run.

sizeStrategy: { { estimate | { estimate:n} | compute | none
| perDatabaseSpace } }

estimate

Estimate the size of the documents in the collection by using
1000 (or 0.1%) of the documents. This is the default value.

The following example estimates the collection size by using
the default of 1000 (or 0.1%) of the documents:

db.runCommand({listDatabases:1,
 sizeStrategy:"estimate"})

estimate: n
Estimate the size of the documents in a collection
by sampling one document for every n documents in the
collection.

The following example estimates the collection size by using
sample size of 0.5% or 1/200th of the documents:

db.runCommand({listDatabases:1,
 sizeStrategy:{estimate:200}})

compute

Compute the exact size of each database.

db.runCommand({listDatabases:1,
 sizeStrategy:"compute"})

none

List the databases but do not compute the size. The database
size is listed as 0.

db.runCommand({listDatabases:1,
 sizeStrategy:"none"})

perDatabaseSpace

Calculate the size of a database by adding the sizes for all
dbspaces, sbspaces, and blobspaces that are assigned to the
tenant database.

Important: The perDatabaseSpace option applies only
to tenant databases that are created by the multi-
tenancy feature.

db.runCommand({listDatabases:1 ,
 sizeStrategy:"perDatabaseSpace"})

ping Yes

serverStatus Yes

SinoDB | MongoDB API and commands | 74

Name Supported Details

top No

whatsmyuri Yes

Instance administration commands

Table 13: Instance administration commands

Name JSON collections Relational tables Details

clone No No

cloneCollection No No

cloneCollectionAsCapped No No

collMod No No

compact No No

convertToCapped No No

copydb No No

create Yes No SinoDB® does not support the
following flags:

• capped

• autoIndexID

• size

• max

createIndexes Yes Yes

drop Yes Yes SinoDB® does not lock the
database to block concurrent
activity.

dropDatabase Yes Yes

dropIndexes Yes No The MongoDB deleteIndexes
command is equivalent.

filemd5 Yes Yes

fsync No No

getParameter No No

listCollections Yes Yes The includeRelational and
includeSystem flags are
supported to include or exclude
relational or system tables in
the results.

Default is
includeRelational=true and
includeSystem=false.

listIndexes Yes Yes

SinoDB | MongoDB API and commands | 75

Name JSON collections Relational tables Details

logRotate No No

reIndex No No

renameCollection No No

repairDatabase No No

setParameter No No

shutdown Yes Yes The timeoutSecs flag is
supported. In the SinoDB®, the
timeoutSecs flag determines the
number of seconds that the wire
listener waits for a busy client
to stop working before forcibly
terminating the session.

The force flag is not supported.

touch No No

Replication commands

Table 14: Replication commands

Name Supported

isMaster Yes

replSetFreeze No

replSetGetStatus No

replSetInitiate No

replSetMaintenance No

replSetReconfig No

replSetStepDown No

replSetSyncFrom No

Resync No

Sharding commands

Table 15: Replication commands

Name JSON
collections

Relational
tables

Details

addShard Yes Yes The MongoDB maxSize and name options are not
supported.

In addition to the MongoDB command syntax for
adding a single shard server, you can use the
SinoDB® specific syntax to add multiple shard
servers in one command by sending the list of
shard servers as an array. For more information,

SinoDB | MongoDB API and commands | 76

Name JSON
collections

Relational
tables

Details

see Creating a shard cluster with MongoDB commands on
page 56.

enableSharding Yes Yes This action is not required for SinoDB® and
therefore this command has no affect for SinoDB®.

flushRouterConfig No No

isdbgrid Yes Yes

listShards Yes Yes The equivalent SinoDB® command is cdr list server.

movePrimary No No

removeShard No No

shardCollection Yes Yes The equivalent SinoDB® command is cdr define
shardCollection.

The MongoDB unique and numInitialChunks options
are not supported.

shardingState No No

split No No

For more information about the MongoDB features, see http://docs.mongodb.org/manual/reference/.

Related Links

Defining a sharding schema with an expression on page 59
Viewing shard-cluster participants on page 64
Creating a shard cluster with MongoDB commands on page 56
Defining a sharding schema with a hash algorithm on page 58

SinoDB® JSON commands

The SinoDB® JSON commands are available in addition to the supported MongoDB commands. These
commands enable functionality that is supported by SinoDB® and they are run by using the
MongoDB API.

The syntax for using SinoDB® commands in the MongoDB shell is:

db.runCommand({command_document})

The command_document contains the SinoDB® command and any parameters.

• createTextIndex on page 77
• exportCollection on page 77
• importCollection on page 79
• lockAccounts on page 80
• runFunction on page 81
• runProcedure on page 81
• transaction on page 82
• unlockAccounts on page 83

http://docs.mongodb.org/manual/reference/

SinoDB | MongoDB API and commands | 77

createTextIndex

Create SinoDB® bts indexes.

Important: If you create text indexes by using the SinoDB® createTextIndex command, you
must query them by using the SinoDB® $ifxtext query operator. If you create text indexes
by using the MongoDB syntax for text indexes, you must query them by using the MongoDB
$text query operator.

createTextIndex : " collection_name " ,
name : " indexName "
[, key : { , " column " }]
, options : { [<btx index parameters>] }

createTextIndex

This required parameter specifies the name of the collection or relational table where the
bts index is created.

name

This required parameter specifies the name of the bts index.

options

This required parameter specifies the name-value pairs for the bts parameters that are used
when creating the index. If no parameter values are required, you can specify an empty
document.

Use bts index parameters to customize the behavior of the index and how text is indexed.
Include JSON index parameters to control how JSON and BSON documents are indexed. For
example, you can index the documents as field name-value pairs instead of as unstructured
text so that you can search for text by field. The name and values of the bts index
parameters in the options parameter are the same as the syntax for creating a bts access
method with the SQL CREATE INDEX statement. The following example creates an index named
articlesIdx on the articles collection by using the bts parameter all_json_names="yes":

db.runCommand({
 createTextIndex:"articles",
 name:"articlesIdx",
 options:{all_json_names:"yes"}})

key

This parameter is required if you are indexing relational tables, but optional if you
are indexing collections. This parameter specifies which columns to index for relational
tables.

The following example creates an index named myidx in the mytab relational table on the
title and abstract columns:

db.runCommand({
 createTextIndex:"mytab",
 name:"myidx",
 key:{"title":"text","abstract":"text"},
 options:{}})

exportCollection

Export JSON collections from the wire listener to a file.

exportCollection : " collection_name " ,
file : " filepath " ,
format : { { " json " | " jsonArray " } [, fields : { " , filter " }] | " csv " , fields
: { " , filter " } }

SinoDB | MongoDB API and commands | 78

[, query : { " query_document " }]
exportCollection

This required parameter specifies the collection name to export.

file

This required parameter specifies the output file path on the host machine where the wire
listener is running. For example:

• Unix™ is file:"/tmp/export.out"

• Windows™ is file:"C:/temp/export.out"

format

This required parameter specifies the exported file format.

json

Default. The .json file format. One JSON-serialized document per line is exported.

The following command exports all documents from the collection that is named c by using
the json format:

> db.runCommand({exportCollection:"c",file:"/tmp/export.out"
 ,format:"json"})
{
 "ok":1,
 "n":1000,
 "millis":NumberLong(119),
 "rate":8403.361344537816
}

Where "n" is the number of documents that are exported, "millis" is the number of
milliseconds it took to export, and "rate" is the number of documents per second that
are exported.

jsonArray

The .jsonArray file format. This format exports an array of JSON-serialized documents
with no line breaks. The array format is JSON-standard.

The following command exports all documents from the collection c by using the jsonArray
format:

> db.runCommand({exportCollection:"c",file:"/tmp/export.out"
 , format:"jsonArray"})
{
 "ok":1,
 "n":1000,
 "millis":NumberLong(81),
 "rate":12345.67901234568
}

Where "n" is the number of documents that are exported, "millis" is the number of
milliseconds it took to export, and "rate" is the number of documents per second that
are exported.

csv

The .csv file format. Comma-separated values are exported. You must specify which fields
to export from each document. The first line of the .csv file contains the fields and
all subsequent lines contain the comma-separated document values.

fields

This parameter specifies which fields are included in the output file. This parameter is
required for the csv format, but optional for the json and jsonArray formats.

SinoDB | MongoDB API and commands | 79

The following command exports all documents from the collection that is named c by using
the csv format, only output the "_id" and "name" fields:

> db.runCommand({exportCollection:"c",file:"/tmp/export.out"
 ,format:"csv",fields:{"_id":1 ,"name":"1"}})
{
 "ok":1,
 "n":1000,
 "millis":NumberLong(57),
 "rate":17543.859649122805
}

Where "n" is the number of documents that are exported, "millis" is the number of
milliseconds it took to export, and "rate" is the number of documents per second that are
exported.

query

This optional parameter specifies a query document that identifies which documents are
exported. The following example exports all documents from the collection that is named c
that have a "qty" field that is less than 100:

> db.runCommand({exportCollection:"c",file:"/tmp/export.out"
 ,format:"json",query:{"qty":{"$lt":100}}})
{"ok":1,"n":100,"millis":NumberLong(5),"rate":20000}

importCollection

Import JSON collections from the wire listener to a file.

importCollection : " collection_name " ,
file : " filepath " ,
format : " { json | jsonArray | csv } "

importCollection

The required parameter specifies the collection name to import.

file

This required parameter specifies the input file path. For example, file: "/tmp/
import.json".

Important: The input file must be on the same host machine where the wire listener
is running.

format

This required parameter specifies the imported file format.

json

Default. The .json file format.

The following example imports documents from the collection that is named c by using the
json format:

> db.runCommand({importCollection:"c",file:"/tmp/import.out"
 ,format:"json"})

jsonArray

The .jsonArray file format.

The following example imports documents from the collection c by using the jsonArray
format:

> db.runCommand({exportCollection:"c",file:"/tmp/import.out"

SinoDB | MongoDB API and commands | 80

 ,format:"jsonArray"})

csv

The .csv file format.

lockAccounts

Lock a database or user account.

Important:

• To run this command, you must be the instance administrator.

• If you specify the lockAccounts:1 command without specifying a db or user argument,
all accounts in all databases are locked.

lockAccounts : { 1 [{ , db : { " database_name " | [, " database_name "] | { " $regex
" : " json_document " } | { { , | " include " : { " database_name " | [, " database_name
"] | { " $regex " : " json_document " } } | " exclude " : { " database_name " | [, "
database_name "] | { " $regex " : " json_document " } } } } } " | , user : { " user_name "
| " json_document " } }] }
lockAccounts:1

This required parameter locks a database or user account.

db

This optional parameter specifies the database name of an account to lock. For example, to
lock all accounts in database that is named foo:

> db.runCommand({lockAccounts:1,db:"foo"})

exclude

This optional parameter specifies the databases to exclude. For example, to lock all
accounts on the system except the accounts that are in the databases named alpha and
beta:

> db.runCommand({lockAccounts:1,db:{"exclude":["alpha","beta"]})

include

This optional parameter specifies the databases to include. For example, to lock all
accounts in the databases named delta and gamma:

> db.runCommand({lockAccounts:1,db:{"include":["delta","gamma"]})

$regex

This optional MongoDB evaluation query operator selects values from a specified JSON
document. For example, to lock accounts for databases that begin with the character a.
and end in e:

> db.runCommand({lockAccounts:1,db:{"$regex":"a.*e"})

user

This optional parameter specifies the user accounts to lock. For example, to lock the
account of all users that are not named alice:

> db.runCommand({lockAccounts:1,user:{$ne:"alice"}});

SinoDB | MongoDB API and commands | 81

runFunction

Run an SQL function through the wire listener. This command is equivalent to the SQL statement
EXECUTE FUNCTION.

runFunction : " function_name "
[, " arguments " : [, argument]]
runFunction

This required parameter specifies the name of the SQL function to run. For example, a
current function returns the current date and time:

> db.runCommand({runFunction:"current"})
{"returnValue": 2016-04-05 12:09:00, "ok":1}

arguments

This parameter specifies an array of argument values to the function. You must provide as
many arguments as the function requires. For example, an add_values function requires two
arguments to add together:

> db.runCommand({runFunction:"add_values", "arguments":[3,6]})
{"returnValue": 9, "ok":1}

The following example returns multiple values from a func_return3 function:

> db.runCommand({runFunction:"func_return3", "arguments":[101]})
{"returnValue": {"serial_num":1103, "name":"Newton", "points":100}, "ok":1}

runProcedure

Run an SQL stored procedure through the wire listener. This command is equivalent to the SQL
statement EXECUTE PROCEDURE.

runProcedure : " procedure_name "
[, " arguments " : [, argument]]
runProcedure

This required parameter specifies the name of the SQL procedure to run. For example, a
colors_list stored procedure, which uses a WITH RESUME clause in its RETURN statement,
returns multiple rows about colors:

> db.runCommand({runProcedure:"colors_list"})
{"returnValue": [
 {"color" : "Red","hex" : "FF0000"},
 {"color" : "Blue","hex" : "0000A0"},
 {"color" :"White","hex" : "FFFFFF"}
], "ok" : 1}

arguments

This parameter specifies an array of argument values to the procedure. You must provide as
many arguments as the procedure requires. For example, an increase_price procedure requires
two arguments to identify the original price and the amount of increase:

> db.runCommand({runProcedure:"increase_price", "arguments":[101, 10]})
{"ok":1}

SinoDB | MongoDB API and commands | 82

transaction

Enable or disable transaction support for a session, run a batch transaction, or, when
transaction support is enabled, commit or rollback transactions. This command binds or unbinds
a connection to the current MongoDB session in a database. The relationship between a MongoDB
session and the SinoDB® JDBC connection is not static.

Important: This command is not supported for queries that are run on shard servers.

transaction : { " enable " | " disable " | " commit " | " rollback " | " execute " , "
commands " : [command_docs] [, " finally " : [command_docs]] | " status " }

enable

This optional parameter enables transaction mode for the current session in the current
database. The following example shows how to enable transaction mode:

> db.runCommand({transaction:"enable"})
{"ok":1}

disable

This optional parameter disables transaction mode for the current session in the current
database. The following example shows how to disable for transaction mode:

> db.c.find()
{"_id":ObjectId("52a8f9c477a0364542887ed4"),"a":1}
> db.runCommand({transaction:"disable"})
{"ok":1}

commit

If transactions are enabled, this optional parameter commits the current transaction. If
transactions are disabled, an error is shown. The following example shows how to commit the
current transaction:

> db.c.insert({"a":1})
> db.runCommand({transaction:"commit"})
{"ok":1}

rollback

If transactions are enabled, this optional parameter rolls back the current transaction. If
transactions are disabled, an error is shown. The following example shows how to roll back
the current transaction:

> db.c.insert({"a":2})
> db.c.find()
{"_id":ObjectId("52a8f9c477a0364542887ed4"),"a":1}
{"_id":ObjectId("52a8f9e877a0364542887ed5"),"a":2}
> db.runCommand({transaction:"rollback"})
{"ok":1}

execute

This optional parameter runs a batch of commands as a single transaction. If transaction
mode is not enabled for the session, this parameter enables transaction mode for the
duration of the transaction.

The list of command documents can include insert, update, delete, findAndModify, and find
command documents. In insert, update, and delete command documents, you cannot set the
ordered property to false. You can use a find command document to run queries, including
SQL queries, but not commands. A find command document can include the $orderby, limit,

SinoDB | MongoDB API and commands | 83

skip, and sort operators. The following example deletes a document from the inventory
collection and inserts documents into the archive collection:

> db.runCommand({"transaction" : "execute",
 "commands" : [
 {"delete":"inventory", "deletes" : [{ "q" : { "_id" : 432432 } }] },
 {"insert" : "archive",
 "documents" : [{ "_id": 432432, "name" : "apollo", "last_status" : 9}]
 }
]
})

Include the optional finally argument if you have a set of command documents to run at the
end of the transaction regardless of whether the transaction is successful. The following
example runs a query with the Warehouse Accelerator. The command document for the finally
argument unsets the USE_DWA environment variable regardless of whether the previous query
succeeds.

> db.runCommand({"transaction" : "execute",
 "commands" : [
 {"find" : "system.sql", "filter" : {"$sql" :
 "SET ENVIRONMENT USE_DWA 'ACCELERATE ON'" } },
 {"find" : "system.sql", "filter" : {"$sql" :
 "SELECT SUM(s.amount) as sum FROM sales AS s
 WHERE s.prid = 100 GROUP BY s.zip" } }
],
"finally" : [{"find":"system.sql", "filter" : {"$sql" :
 "SET ENVIRONMENT USE_DWA 'ACCELERATE OFF'" } }]
})

status

This optional parameter prints status information to indicate whether transaction mode is
enabled, and if transactions are supported by the current database. The following example
shows how to print status information:

> db.runCommand({transaction:"status"})
{"enabled":true,"supports":true,"ok":1}

unlockAccounts

Unlock a database or user account.

Important:

• To run this command, you must be the instance administrator.

• If you specify the unlockAccounts:1 command without specifying a db or user argument,
all accounts in all databases are unlocked.

unlockAccounts : { { 1 [{ , db : { " database_name " | [, " database_name "] | {
" $regex " : " json_document " } | { { , | " include " : { " database_name " | [, "
database_name "] | { " $regex " : " json_document " } } | " exclude " : { " database_name
" | [, " database_name "] | { " $regex " : " json_document " } } } } } " | , user : { "
user_name " | " json_document " } }] } }
unlockAccounts:1

This required parameter unlocks a database or user account.

SinoDB | MongoDB API and commands | 84

db

This optional parameter specifies the database name of an account to unlock. For example,
to unlock all accounts in database that is named foo:

> db.runCommand({unlockAccounts:1,db:"foo"})

exclude

This optional parameter specifies the databases to exclude. For example, to unlock all
accounts on the system except the accounts that are in the databases named alpha and
beta:

> db.runCommand({unlockAccounts:1,db:{"exclude":["alpha","beta"]})

include

This optional parameter specifies the databases to include. For example, to unlock all
accounts in the databases named delta and gamma:

> db.runCommand({unlockAccounts:1,db:{"include":["delta","gamma"]})

$regex

This optional MongoDB evaluation query operator selects values from a specified JSON
document. For example, to unlock accounts for databases that begin with the character a.
and end in e:

> db.runCommand({unlockAccounts:1,db:{"$regex":"a.*e"})

user

This optional parameter specifies the user accounts to unlock. For example, to unlock the
account of all users that are not named alice:

> db.runCommand({unlockAccounts:1,user:{$ne:"alice"}});

Operators

The MongoDB operators that are supported by SinoDB® are sorted into logical areas.

MongoDB read and write operations on existing relational tables are run as if the table were
a collection. The wire listener determines whether the accessed entity is a relational table
and converts the basic MongoDB operations on that table to SQL, and then converts the returned
values back into a JSON document. The initial access to an entity results in an extra call to
the SinoDB® server. However, the wire listener caches the name and type of an entity so that
subsequent operations do not require an extra call.

MongoDB operators are supported on both JSON collections and relational tables, unless
explicitly stated otherwise.

Query and projection operators
SinoDB® supports a subset of the MongoDB query and projection operators.

You can refine your queries with the MongoDB query and projection operators. For example, in
the mongo shell, to find members of the cartype collection with an age greater than 10, you
can use the $gt operator: db.cartype.find({"age":{"$gt":10.0}}).

The JSON wire listener supports the skip, limit, and sort query options. You can set these
options by using the mongo shell or MongoDB drivers.

SinoDB | MongoDB API and commands | 85

• Query selectors on page 85
• Projection operators on page 87

Query selectors
Use query selectors to select specific data from queries.

Array query operators

Table 16: Array query operators

MongoDB command JSON
collections

Relational
tables

Details

$elemMatch Yes No

$size Yes No

Comparison query operators

Table 17: Comparison query operators

MongoDB command JSON
collections

Relational
tables

Details

$all Yes Yes Supported for primitive values and simple queries
only. The operator is only supported when it is the
only condition in the query document.

$eq Yes Yes

$gt Yes Yes

$gte Yes Yes

$in Yes Yes

$lt Yes Yes

$lte Yes Yes

$ne Yes Yes

$nin Yes Yes

$query Yes Yes

Element query operators

Table 18: Element query operators

MongoDB command JSON
collections

Relational
tables

Details

$exists Yes No

$type Yes No

SinoDB | MongoDB API and commands | 86

Evaluation

Table 19: Evaluation query operators

MongoDB command JSON
collections

Relational
tables

Details

$mod Yes Yes

$regex Yes Yes Supported for string matching, similar to queries
that use the SQL LIKE condition. Pattern matching
that uses regular expression special characters is
not supported.

$text Yes Yes The $text query operator support is based on
MongoDB version 2.6.

You can customize your text index and take
advantage of additional text query options by
creating a basic text search index with the
createTextIndex command. For more information, see
SinoDB JSON commands on page 76.

$where No No

Geospatial query operators

Geospatial queries are supported by using the GeoJSON format. The legacy coordinate pairs
are not supported.

Table 20: Geospatial query operators

MongoDB command JSON
collections

Relational
tables

Details

$geoWithin Yes No

$geoIntersects Yes No

$near Yes No

$nearSphere Yes No

JavaScript™ query operators

The JavaScript™ query operators are not supported.

Logical query operators

Table 21: Logical query operators

MongoDB command JSON
collections

Relational
tables

Details

$and Yes Yes

$or Yes Yes

$not Yes Yes

$nor Yes Yes

SinoDB | MongoDB API and commands | 87

Projection operators
Use projection operators to select specific data from a document.

Projection operators

Table 22: Projection operators

MongoDB command JSON
collections

Relational
tables

Details

$ No No

$elemMatch Yes No

$meta Yes Yes

$slice No No

Query modifiers

Table 23: Query modifiers

MongoDB command JSON
collections

Relational
tables

Details

$comment No No

$explain Yes Yes

$hint Yes No

$orderby Yes Yes

For more information about the MongoDB features, see http://docs.mongodb.org/manual/reference/.

Update operators
SinoDB® supports a subset the MongoDB update operators.

You can use update operators to modify or add data in your database. For example, in the
mongo shell, to change the username to atlas in the document with the _id of 101 in the
users collection, you can use the $set operator: db.users.update({"_id":101},{"$set":
{"username":"atlas"}}).

Array update operators

Table 24: Array update operators

MongoDB command JSON
collections

Relational
tables

Details

$ No No

$addToSet Yes No Supported for primitive values only. The operator
is not supported on arrays and objects.

$pop Yes No

$pullAll Yes No Supported for primitive values only. The operator
is not supported on arrays and objects.

$pull Yes No Supported for primitive values only. The operator
is not supported on arrays and objects.

http://docs.mongodb.org/manual/reference/

SinoDB | MongoDB API and commands | 88

MongoDB command JSON
collections

Relational
tables

Details

$pushAll Yes No

$push Yes No

Array update operators modifiers

Table 25: Array update modifiers

MongoDB command JSON
collections

Relational
tables

Details

$each Yes No

$slice Yes No

$sort Yes No

$position Yes No

Bitwise update operators

Table 26: Bitwise update operators

MongoDB command JSON
collections

Relational
tables

Details

$bit Yes No

Field update operators

Table 27: Field update operators

MongoDB command JSON
collections

Relational
tables

Details

$currentDate Yes Yes

$inc Yes Yes

$max Yes Yes

$min Yes Yes

$mul Yes Yes

$rename Yes No

$setOnInsert Yes No

$set Yes Yes

$unset Yes Yes

Isolation update operators

The isolation update operators are not supported.

For more information about the MongoDB features, see http://docs.mongodb.org/manual/reference/.

http://docs.mongodb.org/manual/reference/

SinoDB | MongoDB API and commands | 89

SinoDB® query operators
The SinoDB® query operators are extensions to the MongoDB API.

You can use the SinoDB® query operators in all MongoDB functions that accept query operators,
for example find() or findOne().

$ifxtext

The $ifxtext query operator is similar to the MongoDB $text operator, except that it passes
the search string as-is to the bts_contains() function.

When using relational tables, the MongoDB $text and SinoDB® $ifxtext query operators both
require a column name, specified by $key, in addition to the $search string.

The search string can be a word or a phrase as well as optional query term modifiers,
operators, and stopwords. You can include field names to search in specific fields. The
syntax of the search string in the $ifxtext query operator is the same as the syntax of the
search criteria in the bts_contains() function that you include in an SQL query.

In the following example, a single-character wildcard search is run for the strings text or
test:

db.collection.find({ "$ifxtext" : { "$search" : "te?t" } })

$like

The $like query operator tests for matching character strings and maps to the SQL LIKE
query operator. For more information about the SQL LIKE query operator, see LIKE Operator.
In the following example, a wildcard search is run for strings that contain Informix:

db.collection.find({ "$like" : "%Informix%")

Related Links

Basic Text Search query syntax

Aggregation framework operators
The MongoDB aggregation framework operators that are supported by SinoDB® are sorted into
logical areas.

You can use aggregation framework operators to aggregate and manipulate documents as they move
through the aggregation pipeline stages. You can use some operators to aggregate or slice time
series data.

• Pipeline operators on page 89
• Expression operators on page 90

Pipeline operators

Table 28: Pipeline operators

MongoDB command JSON
collections

Relational
tables

Details

$geoNear Yes No • Supported by using the GeoJSON format. The
MongoDB legacy coordinate pairs are not
supported.

• You cannot use dot notation for the
distanceField and includeLocs parameters.

SinoDB | MongoDB API and commands | 90

MongoDB command JSON
collections

Relational
tables

Details

$group Yes Yes For the syntax to aggregate time series data, see
Aggregate or slice time series data on page 117.

$limit Yes Yes

$match Yes Yes

$out Yes Yes

$project Partial Partial • You can use $project to include fields from
the original document, for example { $project :
{ title : 1 , author : 1 }}.

• You cannot use $project to insert computed
fields, rename fields, or create and populate
fields that hold subdocuments.

• Projection operators are not supported.

• You can use the $slice operator to return part
of a time series. For the syntax to slice time
series data, see Aggregate or slice time series data on
page 117.

$redact No No

$skip Yes Yes

$sort Yes Yes

$unwind Yes No

Expression operators

$group operators

Table 29: $group operators

Command JSON
collections

Relational
tables

Time series
tables

Details

$addToSet Yes No No

$avg Yes Yes Yes

$first Yes Yes Yes

$last Yes Yes Yes

$max Yes Yes Yes

$median No No Yes An SinoDB® JSON operator for
aggregating time series data. For the
syntax to aggregate time series data,
see Aggregate or slice time series data on
page 117.

$min Yes Yes Yes

$nth No No Yes An SinoDB® JSON operator for
aggregating time series data. For the
syntax to aggregate time series data,

SinoDB | MongoDB API and commands | 91

Command JSON
collections

Relational
tables

Time series
tables

Details

see Aggregate or slice time series data on
page 117.

$push Yes No No

$sum Yes Yes Yes

For more information about the MongoDB features, see http://docs.mongodb.org/manual/reference/.

Related Links

Aggregate or slice time series data on page 117

http://docs.mongodb.org/manual/reference/

SinoDB | REST API | 92

Chapter

5
REST API

The REST API provides a method for accessing JSON collections in SinoDB® and provides
driverless access to your data.

With the REST API, you can use MongoDB and SQL queries against JSON and BSON document
collections, traditional relational tables, and time series data. The REST API uses MongoDB
syntax and returns JSON documents.

To use the REST API, define the wire listener type to rest in the wire listener configuration
file.

Related Links

Starting the wire listener on page 43

REST API syntax

A subset of the HTTP methods is supported by the REST API. These methods are DELETE, GET,
POST, and PUT.

• POST on page 92
• PUT on page 95
• GET on page 95
• DELETE on page 98

The examples that are shown in this topic contain line breaks for page formatting; however,
the REST API does not allow line breaks.

POST
The POST method maps to the MongoDB insert or create command.

SinoDB | REST API | 93

Table 30: Supported POST method syntax

Method Path Description

POST / Create a database.

POST /databaseName Create a collection.

databaseName
The database name.

POST /databaseName/collectionName Create a document.

databaseName
The database name.

collectionName
The collection name.

Create a database

This example creates a database with the locale specified.

Request:

Specify the POST method:

POST /

Data:

Specify database name mydb and an English UTF-8 locale:

{name:"mydb",locale:"en_us.utf8"}

Response:

The following response indicates that the operation was successful:

{"msg":"created db 'mydb'","ok":true}

Create a collection

This example creates a collection in the mydb database.

Request:

Specify the POST method and the database name as mydb:

POST /mydb

Data:

Specify the collection name as bar:

{name:"bar"}

Response:

The following response indicates that the operation was successful:

{"msg":"created collection mydb.bar","ok":true}

Create a relational table

This example creates a relational table in an existing database.

SinoDB | REST API | 94

Request:

Specify the POST method and stores_mydb as the database:

POST /stores_mydb

Data:

Specify the table attributes:

{ name: "rel",
 options: {
 columns:[{name:"id",type:"int",primaryKey:true,},
 {name:"name",type:"varchar(255)"},
 {name:"age",type:"int",notNull:false}]
 }
}

Response:

The following response indicates that the operation was successful:

{msg: "created collection stores_mydb.rel" ok: true}

Insert a single document

This example inserts a document into an existing collection.

Request:

Specify the POST method, mydb database, and people collection:

POST /mydb/people

Data:

Specify John Doe age 31:

{firstName:"John",lastName:"Doe",age:31}

Response:

Here is a successful response:

{"n":1,"ok":true}

Insert multiple documents into a collection

This example inserts multiple documents into a collection.

Request:

Specify the POST method, mydb database, and people collection:

POST /mydb/people

Data:

Specify John Doe age 31 and Jane Doe age 31:

[{firstName:"John",lastName:"Doe",age:31},
{firstName:"Jane",lastName:"Doe",age:31}]

SinoDB | REST API | 95

Response:

Here is a successful response:

{"n":2,"ok":true}

PUT
The PUT method maps to the MongoDB update command.

Table 31: Supported PUT method syntax

Method Path Description

PUT /databaseName/collectionName?queryParametersUpdate a document.

databaseName
The database name.

collectionName
The collection name.

queryParameters
The supported SinoDB® queryParameters are
query, upsert, and multiupdate. These map
to the equivalent MongoDB query, insert,
and multi query parameters, respectively.

Update a document in a collection

This example updates the value for Larry in an existing collection, from age 49 - 25:

[{"_id":{"$oid":"536d20f1559a60e677d7ed1b"},"firstName":"Larry"
,"lastName":"Doe","age":49},{"_id":{"$oid":"536d20f1559a60e677d7ed1c"}
,"firstName":"Bob","lastName":"Doe","age":47}]

Request:

Specify the PUT method and query the name Larry:

PUT /mydb/people?query={firstName:"Larry"}

Data:

Specify the MongoDB $set operator with age 25:

{"$set":{age:25}}

Response:

Here is a successful response:

{"n":1,"ok":true}

GET
The GET method maps to the MongoDB query command.

Table 32: Supported GET method syntax

Method Path Description

GET / List databases

SinoDB | REST API | 96

Method Path Description

GET /databaseName List collections

databaseName
The database name.

GET /databaseName/collectionName?queryParametersQuery the collection.

databaseName
The database name.

collectionName
The collection name.

queryParameters
The query parameters.

The supported SinoDB® queryParameters are
batchSize, query, fields, and sort. These
map to the equivalent MongoDB batchSize,
query, fields, and sort parameters.

GET /databaseName/$cmd?
query={command_document}

Run the SinoDB® or MongoDB JSON command.

databaseName
The database name.

command_document
The SinoDB® or MongoDB JSON command
document. Specify the command document
in the same format that is used by the
db.runCommand() in the mongo shell.

List databases

This example lists all of the databases on the server.

Request:

Specify the GET method and forward slash (/):

GET /

Data:

None.

Response:

Here is a successful response:

["mydb" , "test"]

List all collections

This example lists all of the collections in a database.

Request:

Specify the GET method and mydb database:

GET /mydb

Data:

None.

SinoDB | REST API | 97

Response:

Here is a successful response:

["bar"]

Query a collection and sort the results in ascending order

This example sorts the query results in ascending order by age.

Request:

Specify the GET method, mydb database, people collection, and query with the sort
parameter. The sort parameter specifies ascending order (age:1), and filters id (_id:0)
and last name (lastName:0) from the response:

GET /mydb/people?sort={age:1}&fields={_id:0,lastName:0}

Data:

None.

Response:

The first names are displayed in ascending order with the _id and lastName filtered from
the response:

[{"firstName":"Sherry","age":31},
{"firstName":"John","age":31},
{"firstName":"Bob","age":47},
{"firstName":"Larry","age":49}]

Run the collStats command to get statistics about a collection

This example submits the MongoDB collStats command by using the REST API to get statistics
about the jsonlog collection.

Here is the MongoDB shell syntax:

db.runCommand({collStats:"jsonlog"})

Request:

Specify the GET method, mydb database, and the collStats command document as the query:

GET /mydb/$cmd?query={collStats:"jsonlog"}

Data:

None.

Response:

[
 {
 "ns":"mydb.jsonlog",
 "count":1000,
 "size":322065,
 "avgObjSize":322,
 "storageSize":323584,
 "numExtents":158,
 "nindexes":1,
 "lastExtentSize":2048,
 "paddingFactor":0,
 "flags":1,
 "indexSizes":
 {

SinoDB | REST API | 98

 "_id_":49152
 },
 "totalIndexSize":49152,
 "ok":1
 }
]

Run an SQL function

This example runs an SQL function that adds two values.

Here is the MongoDB shell syntax:

> db.runCommand({runFunction:"add_values", "arguments":[3,6]}

Request:

Specify the GET method, mydb database, the runFunction parameter with the function name,
and the arguments parameter with the argument values as the query:

GET mydb/$cmd?query={"runFunction":"add_values","arguments":[3,6]}

Data:

None

Response:

[{"returnValue": 9,"ok":1.0}]

DELETE
The DELETE method maps to the MongoDB delete command.

Table 33: Supported DELETE method syntax

Method Path Description

DELETE / Delete all databases.

DELETE /databaseName Delete a database.

databaseName
The database name.

DELETE /databaseName/collectionName Delete a collection.

databaseName
The database name.

collectionName
The collection name.

DELETE /databaseName/collectionName?queryParameterDelete all documents that satisfy the query
from a collection.

databaseName
The database name.

collectionName
The collection name.

queryParameters
The query parameters.

SinoDB | REST API | 99

Method Path Description

The supported SinoDB® queryParameter is
query. This map to the equivalent MongoDB
query parameter.

Delete a database

This example deletes a database called mydb.

Request:

Specify the DELETE method and the mydb database:

DELETE /mydb

Data:

None.

Response:

Here is a successful response:

{msg: "dropped database", ns: "mydb", ok: true}

Delete a collection

This example deletes a collection from a database.

Request:

Specify the DELETE method, mydb database, and bar collection:

DELETE /mydb/bar

Data:

None.

Response:

Here is a successful response:

{"msg":"dropped collection", "ns":"mydb.bar", "ok":true}

Delete documents from a collection

This example deletes documents from a collection that contains the user "bob".

Request:

Specify the DELETE method, mydb database, people collection, and the query condition:

DELETE /mydb/people?query={user:"bob"}

Data:

None.

Response:

Here is a successful response where n indicates the number of documents deleted.

{"n":1,"ok":true}

Related Links

Manage time series through the wire listener on page 103
The wire listener configuration file on page 19

SinoDB | REST API | 100

Running multiple wire listeners on page 44

Chapter

6
MQTT protocol

The MQTT protocol provides a method for loading JSON data in SinoDB®.

The MQTT protocol is a light-weight messaging protocol that you can use to load data from
devices or sensors. For example, you can use the MQTT protocol to publish data from sensors
into a time series table.

When you define the wire listener type as mqtt, you can insert JSON documents to the database
by sending PUBLISH packets. The MQTT wire listener does not support querying data with
SUBSCRIBE packets.

The jsonListener.jar file is the executable file that includes the wire listener configuration
file, named jsonListener.properties by default, which defines the operational characteristics
for theMongoDB API and the MQTT protocol.

MQTT packet syntax

You can run MQTT packets through the MQTT wire listener.

The SUBSCRIBE packet and its associated packets are not supported by the wire listener. MQTT
clients can use the standard syntax for other MQTT packets, except for the CONNECT and PUBLISH
packets, which have requirements specific to the MQTT wire listener.

For full syntax of MQTT packets, see http://mqtt.org.

CONNECT

You must include a CONNECT packet to identify the client user.

If authentication is enabled in the MQTT wire listener with the authentication.enable=true
setting, you must specify a user name and password. The user name must include the database

http://mqtt.org

SinoDB | MQTT protocol | 102

name with the following format: database_name.user_name. The following example connects to
the database mydb as user joe with the password pass4joe:

CONNECT(mydb.joe, pass4joe)

The password is not encrypted by default. You can encrypt connections by configuring Secure
Sockets Layer or Transport Layer Security encryption in the wire listener configuration file.

PUBLISH

The PUBLISH packet maps to the MongoDB insert or create command. The syntax of the PUBLISH
packet without optional arguments is: PUBLISH(topicName, message). The topicName specifies
the database and table name and the message contains the content to publish.

When you run the PUBLISH packet through the MQTT wire listener, the mandatory arguments have
the following requirements:

• The topicName field must identify the target database and table in the following format:
database_name/table_name.

• The message field must be in JSON format. If you are inserting data into a relational table,
the field names in the JSON documents must correspond to column names in the target table.

The following example inserts a JSON document into the sensordata table in the mydb database:

PUBLISH(mydb/sensordata, { "id": "sensor1234", "reading": 87.5})

Related Links

Loading time series data with the MQTT protocol on page 123

Chapter

7
Manage time series through the wire listener

You can create and manage time series through the wire listener. You interact with time series
data through a virtual table.

You can create, load, and query time series through the MongoDB API or the REST API. For
example, you can program sensor devices that do not have client drivers to load time series
data directly into the database with HTTP commands from the REST API. Because you act on a
virtual table, the TimeSeries row type does not need to contain a BSON column.

You can load time series data through the MQTT protocol if your time series data is stored in
a BSON column in the TimeSeries row type.

The following restrictions apply when you create a time series through the wire listener:

• You cannot define hertz or compressed time series.

• You cannot define rolling window containers.

• You cannot load time series data through a loader program. You must load time series data
through a virtual table.

• You cannot run time series SQL routines or methods from the time series Java™ class library.
You operate on the data through a virtual table.

Related Links

REST API syntax on page 92

Creating a time series through the wire listener

You can create time series with the REST API or the MongoDB API through the wire listener. You
create time series objects by adding definitions to time series collections.

You must understand time series concepts, the properties of your data, and how much storage
space your data requires. For an overview of time series concepts and guidance on how to
design your time series solution, see SinoDB® TimeSeries solution.

Perform the following prerequisite tasks:

• Connect to a database in which to create the time series table. You run all methods in the
database.

• Configure the wire listener for the MongoDB API or the REST API. For more information, see
Configuring the wire listener for the first time on page 17.

• Configure storage spaces for your time series data.

To create a time series through the wire listener:

1. Choose a predefined calendar from the system.timeseries.calendar collection or create a
calendar by adding a document to the system.timeseries.calendar collection.

2. Create a TimeSeries row type by adding a document to the system.timeseries.rowType
collection.

The row type must include one BSON column for the JSON data.

SinoDB | Manage time series through the wire listener | 104

3. Create a container by adding a document to the system.timeseries.container collection.

4. Create a time series table with the time series table format syntax.

5. Instantiate the time series by creating a virtual table with the time series virtual table
format syntax.

6. Load time series data.

You can use the REST API or the MongoDB API to load time series data through a virtual
table. You can use the MQTT protocol to load time series data into the time series base
table.

After you create and load a time series, you query the data though the virtual table with
MongoDB and REST clients.

Time series collections and table formats
You can add, view, and remove documents from the time series collections with REST API and
MongoDB API methods to create and manage your time series. You must use a specific format to
create time series tables and virtual tables that are based on time series tables.

For the REST API, use the GET, POST, and DELETE methods to view, insert, or delete data in the
time series collections.

For the MongoDB API, use the query, create, or remove methods to view, insert, or delete data
in the time series collections.

The time series collections are virtual collections that are used to manage the objects that
are required to store time series data in a database.

• system.timeseries.calendar collection on page 104
• system.timeseries.rowType collection on page 105
• system.timeseries.container collection on page 105
• Time series table format on page 106
• Virtual table format on page 107

system.timeseries.calendar collection

The system.timeseries.calendar collection stores the definitions of predefined and user-
defined calendars. A calendar controls the times at which time series data can be stored. The
calendar definition embeds the calendar pattern definition. For details and restrictions about
calendars, see Calendar data type. For a list of predefined calendars, see Predefined calendars.

Use the following format to add a calendar to the system.timeseries.calendar collection.

calendar
{ name : " calendar_name "
, calendarStart : " start_date " ,
patternStart : " pattern_date " ,
pattern : {
type : " interval "
, intervals :
[, { duration : " num_intervals " , on : { true | false } }] }
}

name

The name of the calendar.

calendarStart

The start date of the calendar.

SinoDB | Manage time series through the wire listener | 105

patternStart

The start date of the calendar pattern.

pattern

The calendar pattern definition.

type

The time interval. Valid values for interval are: second, minute, hour, day, week, month,
year.

intervals

The description of when to record data.

duration

The number of intervals, as a positive integer.

on

Whether to record data during the interval:

true = Recording is on.

false = Recording is off.

system.timeseries.rowType collection

The system.timeseries.rowType collection stores TimeSeries row type definitions. The
TimeSeries row type defines the structure for the time series data within a single column in
the database. For details and restrictions on TimeSeries row types, see TimeSeries data type.

Use the following format to add a TimeSeries row type to the system.timeseries.rowType
collection.

{ name : " rowtype_name "
, fields : [
, { name : " field_name " , type : " data_type " }
] }

name

The rowtype_name is the name of the TimeSeries row type.
fields

name

The name of the field in the row data type. The field_name must be unique for the row
data type. The number of fields in a row type is not restricted.

type

Must be datetime year to fraction(5) for the first field, which contains the time stamp.

The data type of the field. Most data types are valid for fields after the time stamp
field.

system.timeseries.container collection

The system.timeseries.container collection stores container definitions. Time series data
is stored in containers. For details and restrictions on containers, see TSContainerCreate
procedure. Rolling window container syntax is not supported.

Use the following format to add a container to the system.timeseries.container collection.

{ name : " container_name " ,
dbspaceName : " dbspace_name " ,
rowTypeName : " rowtype_name " ,
firstExtent : extent_size ,

SinoDB | Manage time series through the wire listener | 106

nextExtent : next_extent_size }
name

The container_name is the name of the container. The container name must be unique.
dbspaceName

The dbspace_name is the name of the dbspace for the container.
rowTypeName

The rowtype_name is the name of an existing TimeSeries row type in the
system.timeseries.rowType collection.

firstExtent

The extent_size is a number that represents the first extent size for the container, in KB.
nextExtent

The next_extent_size is a number that represents the increments by which the container grows,
in KB. The value must be equivalent to at least 4 pages.

Time series table format

A time series table must have a primary key column that does not allow null values. The last
column in the time series table must be the TimeSeries column. For details and restrictions on
time series tables, see Create the database table.

The following format describes the simplest structure of a time series table. You can include
other options and columns in a time series table.

{ collection : " table_name " ,
options : { columns :
[{ name : " col_name " ,
type : " data_type " ,
primaryKey : true ,
notNull : true } ,
{ name : " col_name " ,
type : " timeseries (rowtype_name) " }] } }
collection

The table_name is the name of the time series table.
options

The collection definition.

columns

The column definitions.

name

The col_name is the name of the column.
type

The data_type is the data type of the column.
For the TimeSeries column, the rowtype_name is the name of an existing TimeSeries row
type in the system.timeseries.rowType collection.

primaryKey

true = The column is the primary key.

notNull

true = The column does not allow null values.

SinoDB | Manage time series through the wire listener | 107

Virtual table format

You use a virtual table that is based on the time series table to insert and query time series
data.

{ collection : " virtualtable_name " ,
options : { timeseriesVirtualTable :
{ baseTableName : " table_name " ,
newTimeSeries : "
calendar (calendar_name) ,
origin (origin) ,
container (container_name)
[{ , irregular | , regular }]
, virtualTableMode : mode
, timeseriesColumnName : " col_name " } } }
collection

The virtualtable_name is the name of the virtual table.
options

timeseriesVirtualTable

The definition of the virtual table.

baseTableName

The table_name is the name of the time series table.
newTimeseries

The time series definition.

calendar

The calendar_name is the name of a calendar in the system.timeseries.calendar
collection.

origin

The origin is the first time stamp in the time series. The data type is DATETIME
YEAR TO FRACTION(5).

container

The container_name is the name of a container in the system.timeseries.container
collection.

regular

Default. The time series is regular.

irregular

The time series is irregular.

virtualTableMode

The mode is the integer value of the TSVTMode parameter that controls the
behavior and display of the virtual table for time series data. For the
settings of the TSVTMode parameter, see The TSVTMode parameter.

timeseriesColumnName

The col_name is the name of the TimeSeries column.

Example: Create a time series through the wire listener
This example shows how to create, load, and query a time series with the MongoDB API or the
REST API through the wire listener.

Before you start this example, ensure these tasks are complete:

SinoDB | Manage time series through the wire listener | 108

• Connect to a database in which to create the time series table. You run all methods in the
database.

• Configure the wire listener for the MongoDB API or the REST API. For more information, see
Configuring the wire listener for the first time on page 17.

• Define a dbspace that is named dbspace1. For more information, see Dbspaces.

In this example, you create a time series that contains sensor readings about the temperature
and humidity in a house. Readings are taken every 10 minutes. The following table lists the
time series properties that are used in this example.

Table 34: Time series properties used in this example

Time series property Definition

Timepoint size 10 minutes

When timepoints are valid Every 10 minutes

Data in the time series The following data:

• Timestamp

• A float value that represents temperature

• A float value that represents humidity

Time series table The following columns:

• A meter ID column of type INTEGER

• A TimeSeries data type column

Origin 2014-01-01 00:00:00.00000

Regularity Regular

Where to store the data In a container that you create

How to load the data Through a virtual table

How to access the data Through a virtual table

To create a time series with the MongoDB API mongo shell or the REST API:

1. Create a time series calendar. The time series calendar is named ts_10min, with a calendar
and pattern start date of 2014-01-01 00:00:00, a calendar pattern that is defined with
intervals of minutes, and data is recorded in 10 minute increments after the origin.

MongoDB API

Add to the predefined system.timeseries.calendar collection.

db.system.timeseries.calendar.insert({"name":"ts_10min",
 "calendarStart":"2014-01-01 00:00:00",
 "patternStart":"2014-01-01 00:00:00",
 "pattern":{"type":"minute",
 "intervals":[{"duration":"1","on":"true"},
 {"duration":"9","on":"false"}]}})

REST API

Request:

Specify the POST method and the system.timeseries.calendar collection:

POST /stores_demo/system.timeseries.calendar

SinoDB | Manage time series through the wire listener | 109

Data:

Specify the calendar attributes:

{"name":"ts_10min",
 "calendarStart":"2014-01-01 00:00:00",
 "patternStart":"2014-01-01 00:00:00",
 "pattern":{"type":"minute",
 "intervals":[{"duration":1,"on":true},
 {"duration":9,"on":false}]}}

Response:

The following response indicates that the operation was successful:

[{"ok":true}]

2. Create a TimeSeries row type. The row type is named reading and includes fields for
timestamp, temperature, and humidity.

MongoDB API

Add to the predefined system.timeseries.rowType collection.

db.system.timeseries.rowType.insert({"name":"reading",
"fields":[{"name":"tstamp","type":"datetime year to fraction(5)"},
 {"name":"temp","type":"float"},
 {"name":"hum","type":"float"}]})

REST API

Request:

Specify the POST method and the system.timeseries.rowType collection:

POST /stores_demo/system.timeseries.rowType

Data:

Specify the row type attributes:

{"name":"reading",
"fields":[{"name":"tstamp","type":"datetime year to fraction(5)"},
 {"name":"temp","type":"float"},
 {"name":"hum","type":"float"}]}

Response:

The following response indicates that the operation was successful:

[{"ok":true}]

3. Create a container. The container is named c_0 and is created in the dbspace1 dbspace, in
the reading time series row, with a first extent size of 1000, and with growth increments
of 500.

MongoDB API

Add to the predefined system.timeseries.container collection.

db.system.timeseries.container.insert({"name":"c_0",
 "dbspaceName":"dbspace1",
 "rowTypeName":"reading",
 "firstExtent":1000,
 "nextExtent":500})

SinoDB | Manage time series through the wire listener | 110

REST API

Request:

Specify the POST method and the system.timeseries.container collection:

POST /stores_demo/system.timeseries.container

Data:

Specify the container attributes:

{"name":"c_0",
 "dbspaceName":"dbspace1",
 "rowTypeName":"reading",
 "firstExtent":1000,
 "nextExtent":500}

Response:

The following response indicates that the operation was successful:

[{"ok":true}]

4. Create a time series table. The time series table is named ts_data1 and includes id and ts
columns.

MongoDB API

Create the ts_data1 time series table:

db.runCommand({"create":"ts_data1",
 "columns":[{"name":"id","type":"int","primaryKey":"true","notNull":"true"},
 {"name":"ts","type":"timeseries(reading)"}]})

REST API

Request:

Specify the GET method:

GET /stores_demo/$cmd?query={create:"ts_data1",
 "columns":[{"name":"id","type":"int","primaryKey":true,"notNull":true},
 {"name":"ts","type":"timeseries(reading)"}]}

Data:

None.

Response:

The following response indicates that the operation was successful:

[{"ok":true}]

5. Create a virtual table. The virtual table is named ts_data1_v and is based on the time
series table that is named ts_data1 and its timeseries column ts, using the ts_10min
calendar, starting on 2014-01-01 00:00:00.00000, in the time series container c_0, with the
virtualTableMode parameter set to 0 (default).

Important: This example contains line breaks for page formatting, however, JSON does
not allow line breaks within strings.

SinoDB | Manage time series through the wire listener | 111

MongoDB API

Create the ts_data1_v virtual table:

db.runCommand({"create":"ts_data1_v",
 "timeseriesVirtualTable":
 {"baseTableName":"ts_data1",
 "newTimeseries":"calendar(ts_10min),origin(2014-01-01
 00:00:00.00000),container(c_0)",
 "virtualTableMode":0,
 "timeseriesColumnName":"ts"}})

REST API

Request:

Specify the GET method:

GET /stores_demo/$cmd?query={"create":"ts_data1_v",
 "timeseriesVirtualTable":
 {"baseTableName":"ts_data1",
 "newTimeseries":"calendar(ts_10min),
 origin(2014-01-01 00:00:00.00000),
 container(c_0)",
 "virtualTableMode":0,
 "timeseriesColumnName":"ts"}}

Data:

None.

Response:

The following response indicates that the operation was successful:

[{"ok":true}]

6. Load records into the time series by inserting documents into the ts_data1_v virtual table.

Because this time series is regular, you are not required to include the time stamp. The
first record is inserted for the origin of the time series, 2014-01-01 00:00:00.00000. The
second record has the time stamp 2014-01-01 00:10:00.00000, and the third record has the
time stamp 2014-01-01 00:20:00.00000.

MongoDB API

Add documents to the ts_data1_v virtual table:

db.ts_data1_v.insert([{"id":1,"temp":15.0,"hum":20.0}, {"id":1,"temp":16.2,hum:19.0},
{id:1,temp:16.5,hum:22.0}])

REST API

Request:

Specify the POST method:

POST /stores_demo/ts_data1_v

Data:

Specify the documents to load:

[{"id":1,"temp":15.0,"hum":20.0},
{"id":1,"temp":16.2,"hum":19.0},

SinoDB | Manage time series through the wire listener | 112

{"id":1,"temp":16.5,"hum":22.0}]

Response:

The following response indicates that the operation was successful:

{"ok":true}

7. Query the time series data by using the ts_data1_v virtual table.

MongoDB API

Query the ts_data1_v virtual table:

db.ts_data1_v.find()

Results:
> db.ts_data1_v.find()
{"id":1,"tstamp":ISODate("2014-01-01T06:00:00Z"),"temp":15,"hum":20}
{"id":1,"tstamp":ISODate("2014-01-01T06:10:00Z"),"temp":16.2,"hum":19}
{"id":1,"tstamp":ISODate("2014-01-01T06:20:00Z"),"temp":16.5,"hum":22}

REST API

Request:

GET /stores_demo/ts_data1_v

Data:

None.

Response:

The following response indicates that the operation was successful:

[{"id":1,"tstamp":{"$date":1388556000000},"temp":15.0,"hum":20.0},
 {"id":1,"tstamp":{"$date":1388556600000},"temp":16.2,"hum":19.0},
 {"id":1,"tstamp":{"$date":1388557200000},"temp":16.5,"hum":22.0}]

Example queries of time series data by using the wire listener

These examples show how to query time series data by using the MongoDB API or the REST API.

Before using these examples, you must configure the wire listener for the MongoDB or REST API.
For more information, see Configuring the wire listener for the first time on page 17. These examples are
run against the stores_demo database. For more information, see dbaccessdemo command: Create
demonstration databases. These examples query the ts_data_v virtual table that stores the device
ID in the loc_esi_id column.

• List all device IDs on page 113
• List device IDs that have a value greater than 10 on page 113
• Find the data for a specific device ID on page 114

• Find and sort data with multiple qualifications on page 114
• Find all data for a device in a specific date range on page 115
• Find the latest data point for a specific device on page 116
• Find the 100th data point for a specific device on page 116

For examples of aggregating or slicing time series data, see Aggregate or slice time series data on
page 117.

SinoDB | Manage time series through the wire listener | 113

List all device IDs

This query returns all unique device IDs.

MongoDB API

Run a distinct command on the ts_data_v virtual table:

db.ts_data_v.distinct("loc_esi_id")

Results:
["4727354321000111","4727354321046021","4727354321090954",...]

REST API

Request:

Specify the GET method on the stores_demo database with the query parameter specified:

GET /stores_demo/$cmd?query={"distinct":"ts_data_v",
"key":"loc_esi_id"}

Data:

None.

Response:

The following response indicates that the operation was successful:

[{"values":["4727354321000111","4727354321046021",
"4727354321090954",...],"ok":1.0}]

List device IDs that have a value greater than 10

This query returns the list of device IDs that have at least one measured value in the time
series that is greater than 10.

MongoDB API

Run a distinct command on the ts_data_v table, with $gt value comparison operator
specified:

db.ts_data_v.distinct("loc_esi_id",{"value":{"$gt":10}})

Results:
["4727354321046021","4727354321132574","4727354321289322",...]

REST API

Request:

Specify the GET method with the query condition on the ts_data_v table and the $gt value
comparison operator specified:

GET /stores_demo/$cmd?query={"distinct":"ts_data_v",
"key":"loc_esi_id","query":{"value":{"$gt":10}}}

Data:

None.

Response:

The following response indicates that the operation was successful:

[{"values":["4727354321046021","4727354321132574",
"4727354321289322",...],"ok":1.0}]

SinoDB | Manage time series through the wire listener | 114

Find the data for a specific device ID

This query returns the data for the device with the ID of 4727354321046021.

MongoDB API

Run a find command on the ts_data_v virtual table with the loc_esi_id value specified:

db.ts_data_v.find({"loc_esi_id":4727354321046021})

Results:
 {"loc_esi_id":"4727354321046021","measure_unit":"KWH",
 "direction":"P","tstamp":ISODate("2010-11-10T06:00:00Z"),
 "value":0.041}
 {"loc_esi_id":"4727354321046021","measure_unit":"KWH",
 "direction":"P","tstamp":ISODate("2010-11-10T06:15:00Z"),
 "value":0.041}
 {"loc_esi_id":"4727354321046021","measure_unit":"KWH",
 "direction":"P","tstamp":ISODate("2010-11-10T06:30:00Z"),
 "value":0.04}
...]

REST API

Request:

Specify the GET method on the ts_data_v virtual table, with the loc_esi_id specified on
the query operator:

GET /stores_demo/ts_data_v?query=
{"loc_esi_id":4727354321046021}

Data:

None.

Response:

The following response indicates that the operation was successful:

[{"loc_esi_id":"4727354321046021","measure_unit":"KWH",
"direction":"P","tstamp":{"$date":1289368800000},"value":0.041},
 {"loc_esi_id":"4727354321046021","measure_unit":"KWH",
"direction":"P","tstamp":{"$date":1289369700000},"value":0.041},
 {"loc_esi_id":"4727354321046021","measure_unit":"KWH",
"direction":"P","tstamp":{"$date":1289370600000},"value":0.040},
 ...]

Find and sort data with multiple qualifications

This query finds all data for the device with the ID of 4727354321046021 with a value greater
than 10.0 and a direction of P. The query returns the tstamp and value fields, and sorts the
results in descending order by the value field.

To query for specific dates when using the REST API, convert the dates to milliseconds since
the epoch. For example:

• 2011-01-01 00:00:00 = 1293861600000

• 2011-01-02 00:00:00 = 1293948000000

MongoDB API

Run a find command on the ts_data_v table, with the $and boolean logical operator
specified:

db.ts_data_v.find({"$and":[{"loc_esi_id":4727354321046021},

SinoDB | Manage time series through the wire listener | 115

{"value":{"$gt":10.0}},{"direction":"P"}]},
{"tstamp":1,"value":1}).sort({"value":-1})

Results:
 {"tstamp":ISODate("2011-01-25T16:15:00Z"),"value":14.58}
 {"tstamp":ISODate("2011-01-26T00:45:00Z"),"value":12.948}
 {"tstamp":ISODate("2011-01-26T02:30:00Z"),"value":12.768}
 ...

REST API

Request:

Specify the GET method on the ts_data_v table, with the $and boolean logical operator
specified:

GET /stores_demo/ts_data_v?query={"$and":[{"loc_esi_id":
4727354321046021},{"value":{"$gt":10.0}},{"direction":"P"}]}
&fields={"tstamp":1,"value":1}&sort={"value":-1}

Data:

None.

Response:

The following response indicates that the operation was successful:

[{"tstamp":{"$date":1295972100000},"value":14.580},
 {"tstamp":{"$date":1296002700000},"value":12.948},
 {"tstamp":{"$date":1296009000000},"value":12.768},
 ...]

Find all data for a device in a specific date range

This query returns the data from midnight January 1, 2011 to January 2, 2011 for device
ID 4727354321000111. The date that is queried is greater than 1293861600000 and less than
1293948000000. The query returns the tstamp and value fields.

MongoDB API

Run a find command on the ts_data_v table, with values specified for the $and boolean
logical query operator:

db.ts_data_v.find({"$and":[{"loc_esi_id":"4727354321000111"},
{"tstamp":{"$gte":ISODate("2011-01-01 00:00:00")}},
{"tstamp":{"$lt":ISODate("2011-01-02 00:00:00")}}]},
{"tstamp":"1","value":"1"})

Results:
 {"tstamp":ISODate("2011-01-01T00:00:00Z"),"value":0.343 }
 {"tstamp":ISODate("2011-01-01T00:15:00Z"),"value":0.349 }
 {"tstamp":ISODate("2011-01-01T00:30:00Z"),"value":1.472 }
...]

REST API

Request:

Specify the GET method on the ts_data_v table in the stores_demo database, with values
specified for the $and boolean logical query operator:

GET /stores_demo/ts_data_v?query={"$and":
[{"loc_esi_id":4727354321000111},{"tstamp":{"$gte":
{"$date":1293861600000}}},{"tstamp":{"$lt":

SinoDB | Manage time series through the wire listener | 116

{"$date":1293948000000}}}]}&fields={"tstamp":1,"value":1}

Data:

None.

Response:

The following response indicates that the operation was successful:

[{"tstamp":{"$date":1293840000000},"value":0.343},
 {"tstamp":{"$date":1293840900000},"value":0.349},
 {"tstamp":{"$date":1293841800000},"value":1.472},
 ...]

Find the latest data point for a specific device

This query sets the sort parameter to order the tstamp field in descending order and sets the
limit parameter to 1 to return only the latest value. The device ID is 4727354321000111 and
the query returns the tstamp and value fields.

MongoDB API

Run a find command on the ts_data_v table, with sort and limit values specified:

db.ts_data_v.find({"loc_esi_id":"4727354321000111"},
{"tstamp":"1","value":"1"}).sort({"tstamp":-1}).limit(1)

Results:
 {"tstamp":ISODate("2011-02-08T05:45:00Z"),"value":1.412 }

REST API

Request:

Specify the GET method on the ts_data_v table, with sort and limit values specified in
the query parameter:

GET /stores_demo/ts_data_v?query={"loc_esi_id":4727354321000111}
&fields={"tstamp":1,"value":1}&sort={"tstamp":-1}&limit=1

Data:

None.

Response:

The following response indicates that the operation was successful:

[{"tstamp":{"$date":1297143900000},"value":1.412}]

Find the 100th data point for a specific device

This query sets the sort parameter to order the tstamp field in ascending order and sets the
skip parameter to 100 to return the 100th value. The device ID is 4727354321000111 and the
query returns the tstamp and value field.

MongoDB API

Run the find command on the ts_data_v table, with values specified for sort, limit and
skip:

db.ts_data_v.find({"loc_esi_id":4727354321000111},
{"tstamp":1,"value":1}).sort({"tstamp":1}).limit(1).skip(100)

Results:

SinoDB | Manage time series through the wire listener | 117

 {"tstamp":ISODate("2010-11-11T07:00:00Z"),"value":0.013}

REST API

Request:

Specify the GET method on the ts_data_v table, with values specified for sort, limit,
and skip in the query parameter:

GET /stores_demo/ts_data_v?query={"loc_esi_id":4727354321000111}
&fields={"tstamp":1,"value":1}&sort={"tstamp":1}&limit=1&skip=100

Data:

None.

Response:

The following response indicates that the operation was successful:

[{"tstamp":{"$date":1289458800000},"value":0.013}]

Aggregate or slice time series data

You can use the MongoDB aggregation pipeline commands to aggregate time series values or
return a slice of a time series.

When you run an aggregation query on a time series table, internally the time series Transpose
function converts the aggregated or sliced data to tabular format and then the genBSON
function converts the results to BSON format. Therefore, the output of the $group or $project
stage in the aggregation pipeline is collection-style JSON data. Any subsequent stages of the
aggregation pipeline can process the data as JSON documents.

The aggregate and slice operations return JSON documents that include the primary key columns
of the time series table. You can remove the primary key columns with the $project operator in
the next stage of the aggregation pipeline.

To run the examples of aggregating and slicing time series data, create a JSON time series by
following the instructions for loading hybrid data: Example for JSON data: Create and load a time
series with JSON documents.

• Aggregate: The $group operator syntax on page 117
• Slice: The $slice operator syntax on page 120

Aggregate: The $group operator syntax

To aggregate time series values, you use the $group operator and include a $calendar object
to define the aggregation period, and include one or more aggregation operator expressions to
define the type of operation and the data to aggregate. The data to aggregate must be numeric
and able to be cast to float values. The $group operator produces the same results as running
the time series AggregateBy function. If you have multiple TimeSeries columns in a table, you
can aggregate values with the $group operator for only the first TimeSeries column.

{ $group :
{
$calendar : { { <Calendar definition> | name : " calendar_name " } } ,
, <Aggregation operator expression> } }
Calendar definition
Calendar definition
interval : number ,
timeunit : " unit " ,

SinoDB | Manage time series through the wire listener | 118

start : " start_time "
[, end : " end_time "]
[, discrete : { true | false }]
}
Aggregation operator expression
Aggregation operator expression
field_name : {
{ operator : { " $ column . field " | " $ column " } | $nth : [{ " $ column . field " | "
$ column " } , position] }
}

$calendar

The calendar that defines the aggregation period. You can specify the name of an existing
calendar with the following document: {name: "calendar_name"}. The calendar must exist
in the CalendarTable table.

You can define a calendar for the aggregation operation with a document that contains the
following fields:

interval

The number is a positive integer that represents number of time units in the aggregation
period. For example, if the interval is 1 and the time unit is DAY, then the values are
aggregated for each day.

timeunit

The unit is the size of the time interval for the aggregation period. Can be SECOND,
MINUTE, HOUR, DAY, WEEK, MONTH, or YEAR.

start

The start_date is the start date of the aggregation operation in DATETIME YEAR TO
FRACTION(3) format.

end

Optional. The end_date is the end date of the aggregation operation in DATETIME YEAR
TO FRACTION(3) format. If you omit the end date, the aggregation operation continues
through the latest time series element.

discrete

Optional. Controls whether the data remains as discrete values or is smoothed to be
continuous.

true = Default. The data remains discrete.

false = The data is smoothed. You might want to smooth your data if you want to treat
your data as continuous, for example, temperature data. Smoothing data can accurately
compensate for missing data. You can only use the $avg, $min, and $max aggregation
operators on smoothed data. You cannot use the $sum, $median, $first, $last, or $nth
aggregation operators on smoothed data.

For example, the following calendar definition produces an aggregate value per day for a
month:

{ $calendar: { interval: 1,
 timeunit: "DAY",
 start: "2015-07-03 15:40:03.000",
 end: "2015-08-03 15:40:03.000",
 discrete: true }

Aggregation operator expression

The field_name is a descriptive name for the results of the aggregation operation.

SinoDB | Manage time series through the wire listener | 119

The operator can be $sum, $avg, $min, $max, $median, $first, $last, or $nth. The $nth
operator requires a position value.

The column is the name of the column to aggregate in the TimeSeries row type. If the column
contains BSON data, include a dot followed by the field name to aggregate within the BSON
documents. For example, if the column name is sensor_data and the field name is value, the
column name is specified as "$sensor_data.value".

The position is an integer that follows the $nth operator to represent the position of the
value to return within the aggregation period. Positive integers begin at the first value.
A position of 1 is the same as using the $first operator. Negative integers begin at the
latest value. A position of -1 is the same as using the $last operator.

Example: Daily average value

The following example returns the daily average of a value over the period of three days for
the v1 field in the sensor_data column in the tstable_j table for the sensor 1:

db.tstable_j.aggregate(
 {$match: {id: 1 } },
 {$group: { $calendar: { interval: 1,
 timeunit: "DAY",
 start: "2014-03-01 00:00:00.000",
 end: "2014-03-03 23:59:59.000",
 discrete: true },
 val_AVG: {$avg: "$sensor_data.v1"} } }
)

{
 "result" : [
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-01T00:00:00Z"),
 "val_avg" : 1.416666666666667
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-02T00:00:00Z"),
 "val_avg" : 1.4437500000000003
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-03T00:00:00Z"),
 "val_avg" : 1.4447916666666671
 }
],
 "ok" : 1
}

Example: Get the maximum value for each month

The following example returns the maximum value for each month over a six-month period for the
v2 field in the sensor_data column in the tstable_j table for the sensor 1:

db.tstable_j.aggregate(
 {$match: {id: 1 } },
 {$group: { $calendar: { interval: 1,
 timeunit: "MONTH",
 start: "2014-01-01 00:00:00.000",
 end: "2014-6-30 23:59:59.000",
 discrete: true },
 maximum: {$max: "$sensor_data.v2"} } }

SinoDB | Manage time series through the wire listener | 120

)
{
 "result" : [
 {
 "id" : "1",
 "tstamp" : ISODate("2014-01-01T00:00:00Z"),
 "maximum" : 22.9
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-02-01T00:00:00Z"),
 "maximum" : 23.4
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-01T00:00:00Z"),
 "maximum" : 23.1
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-04-01T00:00:00Z"),
 "maximum" : 22.9
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-05-01T00:00:00Z"),
 "maximum" : 24.0
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-06-01T00:00:00Z"),
 "maximum" : 24.8
 }
],
 "ok" : 1
}

Slice: The $slice operator syntax

To slice a time series, you use the $project operator to identify the time series and include
a document with a $slice operator to specify the time range of the time series elements to
return. The $slice operator produces the same results as running the time series Clip or
ClipCount functions.

{ $project : { time_series : {
$slice :
{ N | [N , flag] | [tstamp , N [, flag]] | [begin_tstamp , end_tstamp [, flag]] }
} } }

$project

The time_series is the name of the time series column.
$slice

The N is an integer that represents the number of elements to return. Positive values
return elements from the beginning of the time series or starting at the specified time
stamp. Negative values return elements from the end of the time series or ending with the
specified time stamp.

The tstamp is a DATETIME value that represents the start or end time stamp of the elements
to return.

The begin_tstamp is the beginning time stamp of the elements to return.

SinoDB | Manage time series through the wire listener | 121

The end_tstamp is the ending time stamp of the elements to return.
The flag controls the configuration of the resulting time series. For values, see the Clip
function.

Example: Get the next five elements

The following example returns the first five elements, beginning at March 14, 2014, at 9:30
AM, from the tstable_j table for the sensor with the ID of 1:

db.tstable_j.aggregate(
 { $match: { id: 1}},
 { $project: { sensor_data: { $slice: ["2014-03-14 09:30:00.000", 5] }
} }
)

{
 "result" : [
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:30:00Z"),
 "v1" : 1.7,
 "v2" : 20.9
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:45:00Z"),
 "v1" : 1.6,
 "v2" : 17.4
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T10:00:00Z"),
 "v1" : 1.6,
 "v2" : 20.3
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T10:15:00Z"),
 "v1" : 1.8,
 "v2" : 20.4
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T10:30:00Z"),
 "v1" : 1.3,
 "v2" : 17.1
 }
],
 "ok" : 1
}

Example: Get the previous three elements

The following example returns the previous three elements, ending at March 14, 2014, at 9:30
AM, from the tstable_j table for the sensor with the ID of 1:

db.tstable_j.aggregate(
 { $match: { id: 1}},
 { $project: { sensor_data: { $slice: ["2014-03-14 09:30:00.000", -3] }
} }
)

SinoDB | Manage time series through the wire listener | 122

{
 "result" : [
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:00:00Z"),
 "v1" : 1,
 "v2" : 22.8
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:15:00Z"),
 "v1" : 1.8,
 "v2" : 21.6
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:30:00Z"),
 "v1" : 1.7,
 "v2" : 20.9
 }
],
 "ok" : 1
}

Example: Get elements in a range

The following example returns the elements between March 14, 2014, at 9:30 AM and March 14,
2014, at 10:30 AM, from the tstable_j table for the sensor with ID 1:

db.tstable_j.aggregate(
 { $match: { id: 1 }},
 { $project: { sensor_data: { $slice: ["2014-03-14 09:30:00.000",
 "2014-03-14 10:30:00.000"] } } }
)

{
 "result" : [
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:30:00Z"),
 "v1" : 1.7,
 "v2" : 20.9
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:45:00Z"),
 "v1" : 1.6,
 "v2" : 17.4
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T10:00:00Z"),
 "v1" : 1.6,
 "v2" : 20.3
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T10:15:00Z"),
 "v1" : 1.8,
 "v2" : 20.4
 },
 {

SinoDB | Manage time series through the wire listener | 123

 "id" : "1",
 "tstamp" : ISODate("2014-03-14T10:30:00Z"),
 "v1" : 1.3,
 "v2" : 17.1
 }
],
 "ok" : 1
}

Related Links

Aggregation framework operators on page 89
CalendarTable table
AggregateBy function
Clip function
ClipCount function

Loading time series data with the MQTT protocol

You can load JSON documents into time series through the MQTT wire listener. The MQTT wire
listener publishes data directly to the time series base table by internally running time
series loader routines.

You cannot create a time series through the MQTT wire listener. Create a JSON time series with
the REST API, the MongoDB API, or SQL statements. The TimeSeries row type must consist of a
time stamp column plus a BSON column.

For instructions on creating a JSON time series with SQL statements, see Example for JSON data:
Create and load a time series with JSON documents.

To load JSON data through the MQTT wire listener:

1. Set the following parameters in the wire listener configuration file:

• Set the wire listener type to MQTT: listener.type=mqtt

• Optional. Set the number of connections between the wire listener and each time series
table: Set timeseries.loader.connections to the number of connections that you want.

2. Restart the wire listener.

3. From the MQTT clients, load the data into the time series table by publishing data as JSON
documents.

The message argument of the PUBLISH packet must contain the following fields within the JSON
documents:

• One or more fields that identifies the primary key of the time series table. The field
names must be the same as the primary key column names in the time series table.

• A field that identifies the time stamp. The field name must be the same as the time stamp
column in the TimeSeries row type.

• One or more fields to insert into the BSON column in the TimeSeries row type. All fields
that are not identified as a primary key column or the time stamp field are inserted into
the BSON column.

Example

The following example creates a TimeSeries row type, a time series table, a time
series container, and a time series instance:

CREATE ROW TYPE ts_data_j2(
 tstamp datetime year to fraction(5),
 tsdata BSON);

SinoDB | Manage time series through the wire listener | 124

CREATE TABLE IF NOT EXISTS tstable_j2(
 id VARCHAR(50) NOT NULL PRIMARY KEY,
 ts timeseries(ts_data_j2)
) LOCK MODE ROW;

EXECUTE PROCEDURE
 TSContainerCreate('container_j', 'dbspace1', 'ts_data_j2', 512, 512);

INSERT INTO tstable_j2 VALUES(1, 'origin(2014-01-01 00:00:00.00000),
 calendar(ts_15min), container(container_j),
 regular, threshold(0), []');

For this example, the message argument has and id field for the primary key, a
tstamp field for the time stamp, and two fields for the BSON column:

{"id": "value", "tstamp": "time_stamp", "reading": number, "sensor_type":
 "string"}

The following sample Java code connects a client to the MQTT wire listener,
loads a sensor reading, and disconnects from the client:

String broker = "tcp://localhost:1883";
String topicName = "mydb/tstable_j2";
String clientId = "mqttclient1";
MemoryPersistence persistence = new MemoryPersistence();

MqttClient sampleClient = new MqttClient(broker, clientId, persistence);
MqttConnectOptions connOpts = new MqttConnectOptions();
connOtps.setCleanSession(true);
sampleClient.connect(connOpts);

String content = "[{ \"id\": \"sensor1234\" , \"tstamp\": "2016-01-01
 00:00:00" ,
 \"reading\": 87.5, \"sensor_type\": "TEMP"}];
MqttMessage message = new MqttMessage(conent.getBytes());
message.setQos(2);
sampleClient.publish(topicName, message);

sampleClient.disconnect();

Related Links

The wire listener configuration file on page 19
MQTT packet syntax on page 101

Chapter

8
Troubleshooting SinoDB® JSON compatibility

Several troubleshooting techniques, tools, and resources are available for resolving problems
that you encounter with SinoDB® JSON compatibility.

Problem Solution

How do I start the wire
listener?

If the wire listener does not automatically start:

1. Verify that the user was created. For more information, see
Configuring the wire listener for the first time on page 17.

2. Manually start the wire listener. For more information, see
Starting the wire listener on page 43.

How can I debug wire
listener problems?

From the wire listener command line, run the -loglevel level
command, where level is the logging level. Log level options are:

• error

• warn

• info

• debug

• trace

For more information, see Wire listener command line options on page
41.

Where is the wire
listener log file?

Unix™: The log file is in $INFORMIXDIR/jsonListener.log.

Windows™: The log file is named servername_jsonListener.log
and is in your home directory. For example, C:\Users\ifxjson
\ol_informix1210_1_jsonListener.log.

How can I view all of
the current properties
for the wire listener
properties file?

From the wire listener command line, you can run the -
listProperties command. This command prints all of the supported
properties and their default values. For more information, see The
wire listener configuration file on page 19.

How do I access the wire
listener help?

You can view a list of available command line options by running
the -help command.

	SinoDB JSON Compatibility Guide
	Contents
	List of Figures
	List of Tables
	Introduction
	About This Publication
	Types of Users
	Demonstration databases

	Java™ technology dependencies
	Example code conventions
	How to read the syntax diagrams
	Compliance with industry standards

	About the SinoDB® JSON compatibility
	Getting started with SinoDB® JSON
	Software dependencies for JSON compatibility
	MongoDB to SinoDB® term mapping
	Support for dots in field names
	Manipulate BSON data with SQL statements

	Wire listener
	Configuring the wire listener for the first time
	The wire listener configuration file
	Modifying the wire listener configuration file

	Wire listener command line options
	Starting the wire listener
	Running multiple wire listeners
	Stopping the wire listener
	Wire listener logging

	User authentication with the wire listener
	Configuring MongoDB authentication
	Adding users

	Encryption for wire listener communications
	Configuring SSL connections between the wire listener and the database server
	Configuring SSL connections between the wire listener and client applications

	Queries through the wire listener
	Running SQL commands by using the MongoDB API
	Running MongoDB operations on relational tables
	Running join queries by using the wire listener

	High availability support in the wire listener

	JSON data sharding
	Preparing shard servers
	Creating a shard cluster with MongoDB commands
	Shard-cluster definitions for distributing data
	Defining a sharding schema with a hash algorithm
	Defining a sharding schema with an expression

	Shard cluster management
	Changing the definition for a shard cluster
	Viewing shard-cluster participants

	MongoDB API and commands
	Language drivers
	Command utilities and tools
	Collection methods
	Index creation
	Database commands
	SinoDB® JSON commands
	Operators
	Query and projection operators
	Update operators
	SinoDB® query operators
	Aggregation framework operators

	REST API
	REST API syntax

	MQTT protocol
	MQTT packet syntax

	Manage time series through the wire listener
	Creating a time series through the wire listener
	Time series collections and table formats
	Example: Create a time series through the wire listener

	Example queries of time series data by using the wire listener
	Aggregate or slice time series data
	Loading time series data with the MQTT protocol

	Troubleshooting SinoDB® JSON compatibility

